Jump to content

Celebrating NASA’s Coast Guard Astronauts on Coast Guard Day


Recommended Posts

  • Publishers
Posted

Each Aug. 4, Coast Guard Day commemorates the founding on Aug. 4, 1790, of the U.S. Coast Guard as the Revenue-Marine by Secretary of the Treasury Alexander Hamilton. Although considered an internal event for active duty and reserve Coast Guard members, we take the opportunity of Coast Guard Day to honor the astronauts who began their careers in the Coast Guard. To date, NASA has selected three astronauts who served in the Coast Guard: Bruce E. Melnick in 1987, Daniel C. Burbank in 1996, and Andre Douglas in 2021. While Melnick and Burbank have retired from NASA, the decades long relationship between the agency and the Coast Guard carries on with Douglas.

Coast Guard Day banner Official emblem of the U.S. Coast Guard
Left: Coast Guard Day banner. Image credit: courtesy Veteran.com. Right: Official emblem of the U.S. Coast Guard. Image credit: courtesy U.S. Coast Guard.

Under the guidance of Treasury Secretary Hamilton, the U.S. Congress authorized the establishment of the Revenue-Marine on Aug. 4, 1790. The bill also authorized the building of a fleet of 10 Revenue Service ships known as cutters, used to enforce tariff laws established by Congress. By the 1860s, the organization’s name had changed to the U.S. Revenue Cutter Service. On Jan. 28, 1915, President Woodrow Wilson signed into law an act of Congress that merged the Revenue Cutter Service with the U.S. Life Saving Service, naming the new organization the U.S. Coast Guard, dedicated to saving lives at sea and enforcing the nation’s maritime laws. After 177 years in the Treasury Department, the Coast Guard transferred to the newly formed Department of Transportation on April 1, 1967, and then to the Department of Homeland Security on March 1, 2003.

Bruce E. Melnick

Official astronaut portrait of Bruce E. Melnick, Class of 1987 Melnick aboard space shuttle Discovery during the STS-41 mission Melnick on the flight deck of Endeavour
Left: Official astronaut portrait of Bruce E. Melnick, Class of 1987. Middle: Melnick aboard space shuttle Discovery during the STS-41 mission that deployed the Ulysses solar polar probe. Right: Melnick on the flight deck of Endeavour during its first flight, STS-49.

Melnick, a native of Florida, earned a bachelor’s degree in engineering with honors from the U.S. Coast Guard Academy in 1972. During his 20-year career with the U.S. Coast Guard, Melnick’s assignments included serving as operations officer and chief test pilot at the Coast Guard Aircraft Program Office in Grand Prairie, Texas. During his Coast Guard service, Melnick received numerous awards, including two Department of Defense Distinguished Service Medals, two Distinguished Flying Crosses and the Secretary of Transportation Heroism Award. In 1992, he received the U.S. Coast Guard Academy Distinguished Alumni Award. He logged over 5,000 flight hours.. NASA selected Melnick in June 1987 as the first astronaut from the Coast Guard. He completed his training in August 1988, and flew as a mission specialist on Discovery’s STS-41 mission in October 1990. During the four-day flight, he and his crewmates deployed the Ulysses spacecraft to study the Sun’s polar regions. On his second and final spaceflight in May 1992, he served as the flight engineer on STS-49, the first flight of Endeavour. During that mission, the astronauts rescued and repaired the Intelsat VI satellite. He logged more than 300 hours in space. Melnick retired from the U.S. Coast Guard and NASA in July 1992.

Daniel C. Burbank

Official astronaut portrait of Daniel C. Burbank, Class of 1996. Middle left: Burbank installs the Elektron oxygen generation unit in the Zvezda Service Module during STS-106 Burbank installs the Elektron oxygen generation unit Burbank performs a spacewalk during STS-115 Burbank conducts a pulmonary function study while exercising on the bicycle
Left: Official astronaut portrait of Daniel C. Burbank, Class of 1996. Middle left: Burbank installs the Elektron oxygen generation unit in the Zvezda Service Module during STS-106. Middle right: Burbank performs a spacewalk during STS-115. Right: Burbank conducts a pulmonary function study while exercising on the bicycle ergometer in the Destiny module during Expedition 30.

Connecticut-born and Massachusetts native, Burbank received a Bachelor of Science degree in electrical engineering and his commission from the U.S. Coast Guard Academy in May 1985. After attending naval flight training in Pensacola, Florida, he was assigned to Coast Guard Air Station Elizabeth City, North Carolina. In July 1992, Burbank transferred to Coast Guard Air Station Cape Cod, Massachusetts, followed by his assignment in May 1995 to Coast Guard Air Station Sitka, Alaska. Burbank logged over 4,000 flight hours, primarily in Coast Guard helicopters, and flew more than 2,000 missions, including over 300 search and rescue missions. NASA selected Burbank as an astronaut in the class of 1996. During his first spaceflight, the 12-day STS-106 International Space Station assembly mission in September 2000, Burbank and his crewmates prepared the station for the arrival of its first expedition crew. They delivered more than three tons of supplies and installed batteries, power converters, oxygen generation equipment, and a treadmill. He flew his second spaceflight aboard Atlantis in September 2006 on the 12-day STS-115 space station assembly mission. The astronauts delivered and installed the P3/P4 truss and solar arrays, and Burbank took part in one the three spacewalks of the mission, spending 7 hours 11 minutes outside. He flew his third and final mission between November 2011 and April 2012 as a member of Expeditions 29 and 30, serving as Commander of Expedition 30. During the 165-day flight, Burbank and his crewmates participated in nearly 200 experiments and completed 23 major hardware upgrades to the station. During his three missions, Burbank accumulated more than 188 days in space. He retired from NASA in June 2018.

Andre Douglas

Official astronaut portrait of Andre Douglas, Class of 2021 Douglas collects soil samples during simulated moonwalks in Northern Arizona in May 2024 Andre Douglas tries on his lunar spacesuit in July 2024
Left: Official astronaut portrait of Andre Douglas, Class of 2021. Middle: Douglas collects soil samples during simulated moonwalks in Northern Arizona in May 2024. Right: Artemis II backup astronaut Douglas tries on his lunar spacesuit in July 2024. Image credit: Courtesy Andre Douglas.

Douglas, a Virginia native and 2008 U.S. Coast Guard Academy graduate, served as an active-duty Coast Guard officer from 2008 to 2015. He earned a master’s degree in mechanical engineering and in naval architecture and marine engineering from the University of Michigan, a master’s degree in electrical and computer engineering from Johns Hopkins University and a doctorate in systems engineering from George Washington University. NASA selected Douglas as an astronaut candidate in December 2021, and he completed his training on March 5, 2024. On March 19, the U.S. Coast Guard swore-in Douglas as a commander in the Coast Guard Reserve during a commissioning ceremony in Washington, D.C. On July 3, 2024, NASA named Douglas as a backup crew member for the Artemis II mission to circle the Moon.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s X-59 quiet supersonic research aircraft sits on the ramp at Lockheed Martin Skunk Works in Palmdale, California during sunrise, shortly after completion of painting in December 2023.Credit: NASA/Steve Freeman As we observe National Aviation Day Tuesday – a tribute to Orville Wright’s birthday – let’s reflect on both America’s and NASA’s aviation heritage and share how we are pushing the boundaries of flight for the nation’s future. Modern NASA grew from the National Advisory Committee for Aeronautics (NACA), an agency created by Congress in 1915 to advance U.S. aviation. When President Eisenhower signed the National Aeronautics and Space Act of 1958, NACA was dissolved and its people, laboratories and research programs became the foundation of NASA. These intrepid men and women are the cornerstone of the world’s most capable aerospace industry and their legacy lives on today across all facets of the agency.
      The most significant aviation milestones in the twentieth century were achieved through both NASA and NACA research and through the courage of pioneering test pilots. In 1947, the joint NACA/U.S. Army Air Forces (later the U.S. Air Force, or USAF) developed Bell X‑1 flew faster than the speed of sound, shattering the mythical “sound barrier.” This breakthrough, enabled by NACA wind-tunnel data and high-speed aerodynamic expertise, made supersonic flight a reality and led directly to NACA Test Pilot Scott Crossfield being the first human to reach Mach 2, twice the speed of sound, in the Douglass DD558-II a mere six years later. During the X‑15 program of the 1960s, legendary NASA Test Pilots Joe Walker, John McKay, Neil Armstrong, Milt Thompson, and Bill Dana piloted nearly half of the program’s sorties and flew the rocket-powered research plane at altitudes up to 354,200 feet and speeds of 4,520 mph (Mach 6.7).
      The NASA/USAF-developed North American X‑15 became the world’s first reusable hypersonic aerospace vehicle, reaching space (above 50 miles altitude) on 11 separate missions; it provided essential data on materials, flight control and pilot physiology that helped shape the agency’s Mercury, Gemini, Apollo and Space Shuttle programs. These milestones remind us that our nation’s accomplishments are the result of visionary NASA, Department of Defense, industry engineers, and test pilots working together to achieve audacious goals.
      NASA’s commitment to aviation innovation did not stop with early experimental high-speed aircraft. In the 1990s, the U.S. general aviation industry faced a steep decline – production fell from 18,000 aircraft in 1978 to fewer than 1,000 in 1993. NASA saw an opportunity: we envisioned a Small Aircraft Transportation System in which safe, efficient general aviation planes could revitalize a critical industry. To enable that vision, NASA partnered with the Federal Aviation Administration, industry, universities, and non‑profits to create the Advanced General Aviation Transport Experiments (AGATE) consortium in 1994. The AGATE consortium developed safer cockpit displays, crashworthiness improvements, efficient airfoils, and modern manufacturing techniques. These innovations transformed U.S. general aviation, helping spawn industry successes like the Cirrus SR20 and SR22 family of aircraft, which incorporate NASA-derived composite structures and safety features.
      In 2004, NASA’s unmanned X‑43A Hyper-X broke world speed records for air‑breathing aircraft, flying at Mach 6.8 and later Mach 9.6. Those flights demonstrated practical scramjet propulsion and proved that hypersonic cruise flight is achievable.
      Today, we are building on this legacy and pushing the envelope with the X-59. Later this year, NASA Test Pilot Nils Larson will usher in a new era of quiet supersonic flight when he pilots the X‑59 Quesst’s first flight out of NASA’s Armstrong Flight Research Center in Edwards, California. The experimental aircraft, designed to fly at 1.4 times the speed of sound while producing only a gentle sonic “thump” instead of the traditional loud sonic boom, will provide data vital to achieving the vision in President Donald J. Trump’s Executive Order “Leading the World in Supersonic Flight.”
      Hypersonics research is another pillar to our 21st‑century vision. Lessons from the X‑15, X‑43, and Space Shuttle inform our study of high-temperature materials, flight controls and propulsion. These technologies will not only bolster national security but will also spur the development of ultrafast civil transports, shrinking the world even further. We are also investing in 21st century propulsion, additive manufacturing, and autonomy for light aircraft while also developing advanced air traffic control systems. Partnering with U.S. aerospace industry and the FAA, we will bring true 21st century technology into light general aviation aircraft, ensuring America remains at the forefront of aviation innovation.
      I am continually inspired by the ingenuity of our past and the promise of our future. Our roots in NACA remind us that a small group of dedicated men and women can change the world. From the Wright brothers’ pioneering work to the supersonic and hypersonic records set by NASA pilots and vehicles, we have consistently expanded the boundaries of what is possible in flight. Looking ahead, our pursuit of quiet supersonic aircraft, hypersonic technologies, and revitalized general aviation will keep the U.S. aviation industry strong and sustainable for decades to come. On National Aviation Day, we celebrate not only our history but also the teamwork and vision that will carry us into the next century of flight.
      Higher, Farther, Faster!

      Todd C. Ericson is a senior advisor to the NASA administrator for aerospace research and development

      Share
      Details
      Last Updated Aug 19, 2025 EditorJennifer M. Dooren Related Terms
      Aeronautics Flight Innovation NASA Aircraft Supersonic Flight View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This National Aviation Day graphic shows Orville Wright surrounded by the faces of some of NASA’s aeronautical innovators.NASA / Maria Werries The first “A” in NASA stands for Aeronautics – so naturally that means today, Aug. 19, National Aviation Day, is one of our favorite days all year!
      National Aviation Day was first proclaimed in 1939 by President Franklin Roosevelt to celebrate the birthday of aviation pioneer Orville Wright, who, with his brother Wilbur, in 1903, were the first humans to achieve powered flight.
      Each year since the President first marked the occasion, sky-faring Americans have come together on this date in an annual celebration of flight – a time to revel in spreading our wings and slipping the surly bonds of Earth.
      All of us at NASA share in that celebration. We love everything about flight, whether it’s into space or within Earth’s atmosphere.
      Our aeronautical innovators are dedicated to improving the design of airplanes to carry on pioneering new technologies in high-speed flight, airframes and propulsion methods, aerospace engineering modelling, and automating airspace and safety management.
      Our heritage in aviation research goes back more than 100 years. We’ve helped air travel become a safe, efficient, reliable form of transportation. If you’re heading to an airport, keep an eye out for these NASA-developed aviation technologies you might see on your flight:
      WINGLETSNASA studies led to development of vertical extensions that can be attached to wing tips in order to reduce aerodynamic drag without having to increase wingspan. Winglets help increase an airplane’s range, decrease fuel use, and today can be seen on airplanes everywhere.NASA CHEVRON NOZZLESWorking with its industry partners, NASA researchers determined an effective way to reduce noise levels on the ground and in the passenger cabin was to add saw tooth-shaped cut outs, or chevrons, to structures such as exhaust nozzles and cowlings of jet engines.NASA / The Boeing Company GLASS COCKPITS NASA created and tested the concept of replacing dial and gauge instruments with flat panel digital displays. The displays present information more efficiently and provide the flight crew with a more easily understood picture of the aircraft’s health and position.NASA Langley / Sean Smith How Will You Celebrate?
      How else can you celebrate National Aviation Day? Here are seven ideas:
      Visit your local science museum or NASA visitor center
      Explore your local science center for exhibits about aviation and how an airplane flies. And if you live within a short drive from Norfolk, Virginia; Cleveland, or San Francisco, you might consider checking out the visitor centers associated with NASA’s Langley Research Center, Glenn Research Center, or Ames Research Center, respectively. These major NASA field centers play host to the majority of NASA’s aeronautics research. (NASA’s Armstrong Flight Research Center, the fourth of NASA’s aeronautics centers, is located within the restricted area of Edwards Air Force Base in California so they do not have a public visitor’s center.)
      Watch an aviation-themed movie
      There’s no shortage of classic aviation-themed movies available to watch in any format (streaming, DVD, cinema, library rentals, etc.), and with any snacks (popcorn, nachos, gummies, etc.). We dare not attempt a comprehensive list, but a good place to start is our documentary “X-59: NASA’s “Quesst” for Quiet Supersonic Flight” available to stream on NASA+.
      Build an airplane
      Why not? It doesn’t have to be big enough to actually fly in – plastic model kits of the world’s most historic aircraft can be just as rewarding and just as educational, especially for kids who might be thinking about a career as an engineer or technician. In fact, many astronauts will tell you their love of aviation and space began with putting models together as a child. Another idea: Grab some LEGO bricks and build the airplane of your dreams. Or make it easy on yourself, fold a paper airplane and shoot it across the room.
      Take an introductory flight lesson
      Pilots will tell you there is a wonderful sense of freedom in flying, not to mention the incredible views and the personal sense of accomplishment. At the same time, being a pilot is not for everyone, but you won’t know unless you try! Many general aviation airports in the nation have a flight school that may offer an introductory flight lesson at a discounted price. And if you want a taste of flight without leaving the ground, computer desktop flight simulators such as Microsoft Flight Simulator or X-Plane are popular choices and can get you into the virtual sky in short order.
      Visit your local library or download a NASA e-book
      Aviation-themed books, whether fact or fiction, are all over the shelves of your local library – literally. That’s because there’s no single Dewey Decimal number for aviation. A book about aviation history will be in a different section of the library than a book about how to design an airplane. And creative nonfiction books such as the Mark Vanhoenacker’s “Skyfaring,” or autobiographies such as Eileen Collins’ “Through the Glass Ceiling to the Stars,” are off on yet another shelf. Don’t hesitate to ask your librarian for help. And when you get back from the library, or while still there, jump online and check out the NASA e-books you can download and own for free.
      Have a plane spotting picnic near an airport
      At Washington’s National Airport, it’s Gravelly Point. In Tampa, Florida it’s International Mall. If you live near a major international airport, chances are you know the best place where the locals can go to watch aircraft take off and land up close. Be sure to take heed of any security restrictions about where you can and can’t go. But once you have your spot picked out, then load up your picnic basket and camp out for an evening of plane spotting. See how many different types of airplanes you can count or identify.
      Follow what we’re doing to transform aviation
      NASA’s aeronautical innovators are working to transform air transportation to meet the future needs of the global aviation community. Sounds like a big job, right? It is and there are many ways in which NASA is doing this. Improving an airplane’s aerodynamics, making airplanes more efficient and quieter, working with the Federal Aviation Administration to improve air traffic control – the list could go on for many thousands of more words. Bookmark our NASA Aeronautics topic page and follow us on social media @NASAaero.
      So remember this National Aviation Day, NASA is with you when you fly!
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read NASA Tests Research Aircraft to Improve Air Taxi Flight Controls
      Article 5 days ago 3 min read NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing
      Article 2 weeks ago 3 min read NASA Drop Test Supports Safer Air Taxi Design and Certification
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Aug 19, 2025 Related Terms
      Aeronautics Aeronautics Research Mission Directorate View the full article
    • By NASA
      5 Min Read NASA, Army National Guard Partner on Flight Training for Moon Landing
      By Corinne Beckinger
      When Artemis astronauts land on the Moon’s South Pole in a commercial human landing system, they will encounter a landscape pockmarked with deep craters, sloped connecting ridges, and harsh lighting conditions. The Moon’s lack of contrast, combined with its rolling terrain, will also pose a challenge, making it difficult for astronauts to overcome visual illusions on the lunar surface.
      NASA astronaut Bob Hines (left) and Colorado Army National Guard HAATS instructor Ethan Jacobs practice landing procedures in the Rocky Mountains of Colorado in April 2025. Depending on the season, the snowy or dusty conditions can cause visual obstruction. Lunar dust can cause similar visual impairment during future crewed missions. In the mountains of northern Colorado, NASA and the U.S. Army National Guard are using military helicopters to develop a foundational lunar landersimulated flight training course to help astronauts practice flight and landing procedures for the Moon. 
      For decades, military helicopter pilots have trained at the HAATS (High-Altitude Army National Guard Aviation Training Site) in Gypsum, Colorado. In 2021, NASA and the Colorado Army National Guard began working together to develop a course specifically for the next generation of lunar explorers.
      That NASA-specific course is scheduled to be finalized in August 2025, marking an important milestone for Artemis crewed landings training efforts.
      “NASA is using a three-pronged approach with motion-based simulation, in-flight lunar landing analog training, and in-flight lunar simulation to build out its foundational training for Artemis Moon landings,” said NASA astronaut Doug Wheelock, who helped coordinate the training program. “Helicopters at or above 10,000 feet are not really efficient in the thin air, forcing us into operating with very thin power margins similar to the Apollo astronauts having to manage energy and momentum to land safely. The operations along with the terrain at the HAATS course in Colorado’s Rocky Mountains provide a valuable, real-world opportunity for Artemis astronauts to practice flying and landing in conditions similar to maneuvering a lander in the lunar environment.”
      NASA astronaut Raja Chari participates in the HAATS course in April 2025. Since 2021, 22 NASA astronauts and one ESA (European Space Agency) astronaut have participated and evaluated the course based on functionality and Artemis mission needs. NASA/Laura Kiker NASA astronaut Raja Chari participates in the HAATS course in April 2025. Since 2021, 22 NASA astronauts and one ESA (European Space Agency) astronaut have participated and evaluated the course based on functionality and Artemis mission needs. NASA/Corinne Beckinger NASA’s human landing systems that will safely transport astronauts to and from the Moon’s surface will be provided by SpaceX and Blue Origin.
      NASA’s Artemis III mission will build on earlier test flights and add new capabilities, including SpaceX’s Starship Human Landing System and advanced spacesuits, to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
      While each industry provider is responsible for training Artemis astronauts on its specific lander, NASA is establishing foundational training to help prepare astronauts for crewed flights.
      Flight training opportunities like this are vital to mission success and crew safety.”
      Doug Wheelock
      NASA Astronaut
      “Over the last few years, NASA and the Army National Guard have worked closely to evaluate training procedures and landing zone areas, incorporating accounts from Apollo astronauts,” Wheelock said. “During training flights at HAATS, astronauts can experience the visual illusions, cross-cockpit communication, and degraded visibility they may experience navigating to their landing zone near the lunar south pole. Flight training opportunities like this are vital to mission success and crew safety.”
      Paired with trained instructors from the Army National Guard, astronauts fly to mountaintops and valleys in a range of aircraft, including LUH-72 Lakotas, CH-47 Chinooks, and UH-60 Black Hawks.
      While one astronaut pilots the aircraft, an astronaut in the back charts the landing area, marking key landmarks, identifying potential hazards, and helping to track the flight path. Throughout the week-long course, the landing zones and situations become more challenging, allowing astronauts to experience team dynamics and practice communication skills they will need to land on the Moon.
      “Our full-time Colorado Army National Guard pilots have thousands of flight hours navigating the Rocky Mountains at altitudes ranging from 6,500 to 14,200 feet, and we are reaching new heights by providing realistic and relevant training with NASA for Artemis,” said first sergeant Joshua Smith of the HAATS program. “Our Colorado Army National Guard pilots may not fly around the Moon, but we wear our motto, de monitbus ad astra — from the mountains to the stars — with pride.”
      Fast Facts
      On the Moon’s South Pole, the Sun is never more than 1.5 degrees above or below the horizon. With the Sun at such a low angle and with only a thin exosphere, shadows are stark, and astronauts may find it difficult to determine distances and heights.

      The Moon’s atmosphere is extremely thin, with few particles, and is called an exosphere. The Moon’s exosphere is thin enough to glow in sunlight, which has been observed by spacecraft and some of the Apollo astronauts. The Moon’s surface is challenging to land on. There are inactive volcanoes, bounders, large basins, craters, and cracks in the Moon’s crust, caused by the Earth’s gravity tugging on the Moon. Moon dust can also obscure the view from the windows of a commercial human landing system, and affect sensors that relay important information, such as altitude and velocity, to astronauts. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all. 
      For more information about Artemis visit:
      https://www.nasa.gov/artemis
      Share
      Details
      Last Updated Aug 18, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Lander Challenge General Human Landing System Program Marshall Space Flight Center Explore More
      3 min read Human Rating and NASA-STD-3001
      Article 3 days ago 3 min read NASA Seeks Proposals for 2026 Human Exploration Rover Challenge 
      Article 3 days ago 4 min read NASA IXPE’s ‘Heartbeat Black Hole’ Measurements Challenge Current Theories
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Artemis
      Human Landing System
      Earth’s Moon
      The Moon makes Earth more livable, sets the rhythm of ocean tides, and keeps a record of our solar system’s…
      Artemis III
      View the full article
    • By NASA
      The crew of NASA’s SpaceX Crew-11 mission pose for a photo during a training session.Credit: SpaceX NASA astronauts Michael Finke and Zena Cardman will connect with students in Minnesota as they answer prerecorded science, technology, engineering, and mathematics (STEM) questions aboard the International Space Station.
      The Earth-to-space call will begin at 11 a.m. EDT on Wednesday, Aug. 20, and will stream live on the agency’s Learn With NASA YouTube channel.
      Media interested in covering the event must RSVP by 5 p.m., Tuesday, Aug. 19, to Elizabeth Ross at: 952-838-1340 or elizabeth.ross@pacer.org.
      The PACER center will host this event in Bloomington for students in their Tech for Teens program. The organization aims to improve educational opportunities and enhance the quality of life for children and young adults with disabilities and their families. The goal of this event is to help educate and inspire teens with disabilities to consider opportunities in STEM fields.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Golden Age explorers and ensuring the United States continues to lead in space exploration and discovery.
      See more information on NASA in-flight downlinks at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-511
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Aug 15, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Artemis ISS Research STEM Engagement at NASA View the full article
    • By NASA
      A member of the space crop production team prepares materials for Veggie seed pillows inside the Space Systems Processing Facility at NASA’s Kennedy Space Center. NASA/Cory S Huston When the Crew-11 astronauts launched to the International Space Station on August 1, 2025, they carried with them another chapter in space farming: the latest VEG-03 experiments, complete with seed pillows ready for planting.
      Growing plants provides nutrition for astronauts, as well as psychological benefits that help maintain crew morale during missions.
      During VEG-03 MNO, astronauts will be able to choose what they want to grow from a seed library including Wasabi mustard greens, Red Russian Kale, and Dragoon lettuce.
      From Seed to Space Salad
      The experiment takes place inside Veggie, a chamber about the size of carry-on luggage. The system uses red, blue, and green LED lights to provide the right spectrum for plant growth. Clear flexible bellows — accordion-like walls that expand to accommodate maturing plants — create a semi-controlled environment around the growing area.
      Astronauts plant thin strips containing their selected seeds into fabric “seed pillows” filled with a special clay-based growing medium and controlled-release fertilizer. The clay, similar to what’s used on baseball fields, helps distribute water and air around the roots in the microgravity environment. 
      Crew members will monitor the plants, add water as needed, and document growth through regular photographs. At harvest time, astronauts will eat some of the fresh produce while freezing other samples for return to Earth, where scientists will analyze their nutritional content and safety.
      How this benefits space exploration
      Fresh food will become critical as astronauts venture farther from Earth on missions to the Moon and Mars. NASA aims to validate different kinds of crops to add variety to astronaut diets during long-duration space exploration missions, while giving crew members more control over what they grow and eat.
      How this benefits humanity
      The techniques developed for growing crops in space’s challenging conditions may also improve agricultural practices on Earth. Indoor crop cultivation approaches similar to what astronauts do in Veggie might also be adapted for horticultural therapy programs, giving elderly or disabled individuals new ways to experience gardening when traditional methods aren’t accessible.
      Related Resources
      VEG-03 MNO on the Space Station Research Explorer
      Veggie Vegetable Product System
      Veggie Plant Growth System Activated on International Space Station
      About BPS
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
  • Check out these Videos

×
×
  • Create New...