Members Can Post Anonymously On This Site
MESSENGER – From Setbacks to Success
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of MaRS ICICLE concept.NASA/Aaswath Pattabhi Raman Aaswath Pattabhi Raman
University of California, Los Angeles
Exploration of Mars has captivated the public in recent decades with high-profile robotic missions and the images they have acquired seeding our collective imagination. NASA is actively planning for human exploration of Mars and laid out some of the key capabilities that must be developed to execute successful, cost-effective programs that would put human beings on the surface of another planet and bring them home safely. Efficient, flexible and productive round-trip missions will be key to further human exploration of Mars. New round-trip mission concepts however need substantially improved long-duration storage of cryogenic propellants in various space environments; relevant propellants include liquid Hydrogen (LH2) for high specific impulse Nuclear Thermal Propulsion (NTP) which can be deployed in strategic locations in advance of a mission. If enabled, such LH2 storage tanks could be used to refill a crewed Mars Transfer Vehicle (MTV) to send and bring astronauts home quickly, safely, and cost-effectively. A well-designed cryogenic propellant storage tank can reflect the vast majority of photons incident on the spacecraft, but not all. In thermal environments like Low Earth Orbit (LEO), there is residual heating due to light directly from the Sun, sunlight reflected off Earth, and blackbody thermal radiation from Earth. Over time, this leads to some of the propellant molecules absorbing the requisite latent heat of vaporization, entering the gas phase, and ultimately being released into space to prevent an unsustainable build-up of pressure in the tank. This slow “boil-off” process leads to significant losses of the cryogenic liquid into space, potentially leaving it with insufficient mass and greatly limiting Mars missions. We propose a breakthrough mission concept: an ultra-efficient round-trip Mars mission with zero boil off of propellants. This will be enabled by low-cost, efficient cryogenic liquid storage capable of storing LH2 and LOx with ZBO even in the severe and fluctuating thermal environment of LEO. To enable this capability, the propellant tanks in our mission will employs thin, lightweight, all-solid-state panels attached to the tank’s deep-space-facing surfaces that utilize a long-understood but as-yet-unrealized cooling technology known as Electro-Luminescent Cooling (ELC) to reject heat from cold solid surfaces as non-equilibrium thermal radiation with significantly more power density than Planck’s Law permits for equilibrium thermal radiation. Such a propellant tank would drastically lower the cost and complexity of propulsion systems for crewed Mars missions and other deep space exploration by allowing spacecraft to refill propellant tanks after reaching orbit rather than launching on the much larger rocket required to lift the spacecraft in a single-use stage. To achieve ZBO, a storage spacecraft must keep the storage tank’s temperature below the boiling point of the cryogen (e.g., < 90 K for LOx and < 20 K for liquid H2). Achieving this in LEO-like thermal environments requires both excellent reflectivity toward sunlight and thermal radiation from the Earth, Mars and other nearby bodies as well as a power-efficient cooling mechanism to remove what little heat inevitably does leak in, a pair of conditions ideally suited to the ELC cooling systems that will makes our full return-trip mission to Mars a success.
2025 Selections
Facebook logo @NASATechnology @NASA_Technology
Share
Details
Last Updated May 27, 2025 EditorLoura Hall Related Terms
NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
Space Technology Mission Directorate
NASA Innovative Advanced Concepts
NIAC Funded Studies
About NIAC
View the full article
-
By NASA
Rebecca Mataya is a budget analyst at NASA’s Stennis Space Center. “Whether you are an engineer, analyst, lawyer, technician, communicator or innovator, there is a place for you here at NASA,” she said. “Every skill contributes to the greater mission of pushing the boundaries of exploration, discovery, and progress. If you have a passion, determination, and willingness to learn, NASA is a place where you can grow and leave a lasting impact on the future of space.”NASA/Stennis A career path can unfold in unexpected ways. Ask NASA’s Rebecca Mataya.
The journey to NASA’s Stennis Space Center near Bay St. Louis, Mississippi, was not planned but “meant to be,” she said.
While working for a local business, the Picayune, Mississippi, native frequently delivered items to NASA Stennis. While making a delivery, Mataya noticed a construction worker who needed directions while waiting to receive a NASA Stennis visitor’s badge.
“I stepped in by offering a map and highlighting the way,” Mataya said.
This small moment of initiative caught the attention of the receptionist, who mentioned an opening at NASA Stennis. She noted that Mataya’s approach to the situation displayed the NASA Stennis culture of hospitality and a can-do attitude.
“The rest is history,” she said. “Looking back, it was not just about finding a job – it was about NASA Stennis finding me, and me discovering a place where I would build a fulfilling career.”
Since the first day of work when Mataya walked into NASA Stennis “in complete awe,” she has felt like every day is a learning experience filled with “wow” moments, like seeing a test stand up close and meeting rocket engineers.
The Carriere, Mississippi, resident worked as a support contractor from 2008 to 2022, filling various roles from lead security support specialist to technical writer and program manager.
Her career path has progressed, where each role built upon the previous.
As a budget analyst in the NASA Stennis Office of the Chief Financial Officer since 2022, Mataya oversees the planning, programing, budgeting, and execution of funds for all Office of Strategic Infrastructure work within the NASA Stennis Center Operations Directorate. She also manages budgets for the NASA Stennis Construction of Facilities projects, and the congressionally approved Supplemental Funding portfolio.
“It is a role that requires adaptability, strategic thinking, and financial oversight,” she said. “I have cultivated these skills through years of experience, but more than that, it is a role that allows me to contribute something meaningful to the future of NASA and space exploration.”
Mataya will complete a master’s degree in Business Administration from Mississippi State University in May. She previously earned her bachelor’s degree from Mississippi State and an associate degree from Pearl River Community College.
“My career has been shaped by growth and achievement, but the greatest highlight has always been the incredible people I have had the privilege of working with,” she said. “Walking the halls of NASA, where top leaders recognize me by name, is a testament to the trust and relationships I have built over the years.”
Mataya said supervisors have consistently entrusted her with more complex projects, confident in her ability to rise to the challenge and deliver results. As a result, she has had opportunities to mentor interns and early-career professionals, guiding them as others once guided her.
“Seeing my colleagues succeed and knowing they have reached their goals, and championing their progress along the way, remains one of the most rewarding aspects of my career,” she said.
Mataya knows from experience that NASA Stennis offers opportunity and a supportive environment, not only for employees looking for career growth, but to customers seeking world-class testing facilities. “NASA Stennis is a place where collaboration thrives,” she said. “It is where NASA, tenants, and commercial partners come together as one cohesive community with a culture of mutual respect, support, and an unwavering commitment to excellence. As America’s largest rocket propulsion test site, NASA Stennis is evolving, and I look forward to seeing how our technological advancements attract new commercial partners and expand NASA’s capabilities.”
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Smooshing for Science: A Flat-Out Success
NASA’s Mars Perseverance rover acquired this image using its SHERLOC WATSON camera, located on the turret at the end of the rover’s robotic arm. The view is looking down at a flattened pile of tailings created by the coring of science target “Green Gardens,” so named because it contains serpentine, a mineral often green in color. The rover’s SHERLOC instrument (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) uses cameras, spectrometers, and a laser to search for organics and minerals that have been altered by watery environments and may be signs of past microbial life; in addition to its black-and-white context camera, SHERLOC is assisted by WATSON (Wide Angle Topographic Sensor for Operations and eNgineering), a color camera for taking close-up images of rock grains and surface textures. Perseverance acquired this image on Feb. 20, 2025 — sol 1424, or Martian day 1,424 of the Mars 2020 mission — at the local mean solar time of 13:11:41. This photo was selected by public vote and featured as “Image of the Week” for Week 210 (Feb. 16-22, 2025) of the Perseverance rover mission on Mars. NASA/JPL-Caltech Written by Henry Manelski, Ph.D. student at Purdue University
The Perseverance team is always looking for creative ways to use the tools we have on Mars to maximize the science we do. On the arm of the rover sits the SHERLOC instrument, which specializes in detecting organic compounds and is crucial in our search for signs of past microbial life. But finding these organics isn’t easy. The uppermost surface of most rocks Perseverance finds on Mars have been exposed to ultraviolet rays from the sun and the long-term oxidative potential of the atmosphere, both of which have the potential to break down organic compounds. For this reason, obtaining SHERLOC measurements from a “fresh” rock face is ideal. Last week the rover cored a serpentine-rich rock aptly named “Green Gardens,” resulting in a fresh pile of drill tailings. To get this material ready for the SHERLOC instrument, which requires a smooth area to obtain a measurement, the science team did something for the first time on Mars: We smooshed it!
Using the contact sensor of our sampling system, designed to indicate when our drill is touching a rock as it prepares to take a core, Perseverance pressed down into the tailings pile, compacting it into a flat, stable patch for SHERLOC to investigate. This unorthodox approach worked perfectly! The resulting SHERLOC spectral scan of these fresh tailings — which include serpentine, a mineral of key astrobiological interest — was a success. These flattened drill tailings are a great example of how a bit of out-of-the-box (or out-of-this-world!) thinking helps us maximize science on Mars. With this success behind us, the rover is rolling west toward the heart of “Witch Hazel Hill,” where more ancient rocks — and who knows what surprises — await!
Share
Details
Last Updated Feb 28, 2025 Related Terms
Blogs Explore More
4 min read Sols 4466-4468: Heading Into the Small Canyon
Article
2 days ago
2 min read Sols 4464-4465: Making Good Progress
Article
2 days ago
3 min read Sols 4461-4463: Salty Salton Sea?
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By Space Force
Personnel at the Air Force Accessions Center demonstrated their ability to adapt quickly to evolving accession requirements, resulting in dozens of highly qualified cadets being notified of a pilot career field selection.
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
Sols 4355-4356: Weekend Success Brings Monday Best
NASA’s Mars rover Curiosity acquired this image of the contact science target “Black Bear Lake” from about 7 centimeters away (about 3 inches), using its Mars Hand Lens Imager (MAHLI). The MAHLI, located on the turret at the end of the rover’s robotic arm, used an onboard focusing process to merge multiple images of the same target into a composite image, on Nov. 3, 2024 – sol 4353, or Martian day 4,353 of the Mars Science Laboratory Mission – at 21:36:01 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Nov. 4, 2024
After a spooky week last week, it’s great to see all our weekend plans succeed as planned! We don’t take success for granted as a rover going on 13 years. With all of the science at our fingertips and all the battery power we could need, the team took right advantage of this two-sol touch-and-go Monday plan. We have a bedrock DRT target for APXS and MAHLI named “Epidote Peak” and a MAHLI-only target of a crushed rock we drove over named “Milly’s Foot Path.”
APXS data is better when it’s cold, so we’ve planned the DRT brushing and APXS to start our first sol about 11:14 local Gale time. MAHLI images are usually better in the afternoon lighting, so we’ll leave the arm unstowed and spend some remote science time beforehand, about 12:15 local time. ChemCam starts that off with a LIBS raster over a bedrock block with some interesting light and dark layering, named “Albanita Meadows” and seen here in the the upper-right-ish of this Navcam workspace frame. ChemCam will then take a long-distance RMI mosaic of a portion of the upper Gediz Vallis ridge to the north. Mastcam continues the remote science with an Albanita Meadows documentation image, a 21-frame stereo mosaic of some dark-toned upturned blocks about 5 meters away (about 16 feet), a four-frame stereo mosaic of some polygonal fracture patterns about 20 meters away (about 66 feet), and a mega 44-frame stereo mosaic of Wilkerson butte, upper Gediz Vallis ridge, “Fascination Turret,” and “Pinnacle Ridge” in the distance. That’s a total of 138 Mastcam images! With remote sensing complete, the RSM will stow itself about 14:00 local time to make time for MAHLI imaging.
Between about 14:15 and 14:30 local time, MAHLI will take approximately 64 images of Epidote Peak and Milly’s Foot Path. Most of the images are being acquired in full shadow, so there is uniform lighting and saturation in the images. We’ll stow the arm at about 14:50 and begin our drive! This time we have an approximately 34-meter drive to the northwest (about 112 feet), bringing us almost all the way to the next dark-toned band in the sulfate unit. But no matter what happens with the drive, we’ll still do some remote science on the second sol including a Mastcam tau observation, a ChemCam LIBS in-the-blind (a.k.a AEGIS: Autonomous Exploration for Gathering Increased Science), and some Navcam movies of the sky and terrain.
Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
Share
Details
Last Updated Nov 06, 2024 Related Terms
Blogs Explore More
3 min read Sols 4352-4354: Halloween Fright Night on Mars
Article
1 day ago
2 min read Sols 4350-4351: A Whole Team Effort
Article
5 days ago
2 min read Sols 4348-4349: Smoke on the Water
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.