Jump to content

NASA Additive Manufacturing Project Shapes Future for Agency, Industry Rocket Makers


Recommended Posts

  • Publishers
Posted
5 Min Read

NASA Additive Manufacturing Project Shapes Future for Agency, Industry Rocket Makers

ramptheader1.jpg?w=1536
Additively manufactured rocket engine hardware coupled with advanced composites allows for precision features, such as multi-material coolant channels developed by the Rapid Analysis and Manufacturing Propulsion Technology team at NASA’s Marshall Space Flight Center in Huntsville, Alabama
Credits: NASA

The widespread commercial adoption of additive manufacturing technologies, commonly known as 3D printing, is no surprise to design engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama whose research created stronger, lighter weight materials and new manufacturing processes to make rocket parts.

NASA’s RAMPT (Rapid Analysis and Manufacturing Propulsion Technology) project is on the cutting-edge of additive manufacturing – helping the agency and industry produce new alloys and additively manufactured parts, commonly referred to as 3D printing, according to Paul Gradl, the project’s co-principal investigator at NASA Marshall.

“Across NASA’s storied legacy of vehicle and hardware design, testing, and integration, our underlying strength is in our application of extremely durable and severe environment materials and innovative manufacturing for component design,” said Gradl. “We strive to fully understand the microstructure and properties of every material and how they will ultimately be used in components before we make them available to industry for flight applications.”

The same principle applies to additive manufacturing, the meticulous process of building components and hardware one layer of material at a time.

An info graphic shows the different sections of a testing article
The graphic captures additive manufacturing technology milestones led by the RAMPT project. Using 3D-printed, liquid oxygen/hydrogen thrust chamber hardware at chamber pressures of up to 1,400 pounds per square inch, Marshall engineers have completed 12 hot-fire tests totaling a combined 330 seconds. The project also has delivered composite materials demonstrating a 40% weight savings over conventional bimetallic combustion chambers. NASA and its industry partners are working to make this cutting-edge technology accessible for a host of future NASA and commercial space missions.
NASA/Pablo Garcia

“The RAMPT project’s goal is to support commercial, technical readiness, enabling our industry partners to meet the challenges inherent in building new generations of safer, more cost-effective deep space exploration propulsion systems,” said John Fikes, RAMPT project manager.

Since its inception, RAMPT has conducted 500 test-firings of 3D-printed injectors, nozzles, and chamber hardware totaling more than 16,000 seconds, using newly developed extreme-environment alloys, large-scale additive manufacturing processes, and advanced composite technology. The project has also started developing a full-scale version for the workhorse RS-25 engine – which experts say could reduce its costs by up to 70% and cut manufacturing time in half.

As printed structures are getting bigger and more complex, a major area of interest is the additive manufacturing print scale. A decade ago, most 3D-printed parts were no bigger than a shoebox. Today, additive manufacturing researchers are helping the industry produce lighter, more robust, intricately designed rocket engine components 10-feet tall and eight-feet in diameter.

A man and women look at a piece of hardware
Tyler Gibson, left, and Allison Clark, RAMPT engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, inspect an additively manufactured composite overwrap thrust chamber assembly. Conventional rocket hardware may require more than 1,000 or more individually joined parts. Additive manufacturing permits engineers to print these channels in novel alloys as a single piece with multiple alloys, dramatically reducing manufacturing time.
NASA/Danielle Burleson

“NASA, through public-private partnerships, is making these breakthroughs accessible to the commercial space industry to help them rapidly advance new flight technologies of their own,” Gradl said. “We’re solving technical challenges, creating new supply chains for parts and materials, and increasing the industry’s capacity to rapidly deliver reliable hardware that draws a busy commercial space infrastructure ever closer.”

The RAMPT project does not just develop the end technology but the means to fully understand that technology, whatever the application. That means advancing cutting-edge simulation tools that can identify the viability of new alloys and composites at the microstructural level – assessing how they handle the fiery rigors of liftoff, the punishing cold of space, and the dynamic stresses associated with liftoffs, landings, and the long transits between.

NASA’s strategy to encourage commercial and academic buy-in is to offer public-private partnership opportunities, wherein industry and academia contribute as much as 25% of project development costs, allowing them to reap the benefits.

For example, NASA successfully delivered a refined version of an alloy, known as GRCop42, created at NASA Glenn nearly 40 years ago which helped commercial launch provider, Relativity Space, launch the first fully 3D-printed rocket in March 2023.

“Our primary goal with these higher-performance alloys is to prove them in a rocket engine test-fire environment and then hand them off to enable commercial providers to build hardware, fly launch vehicles, and foster a thriving space infrastructure with real scientific, social, and economic rewards,” Gradl said.

A key benefit of additive manufacturing hardware development is radically reducing the “design-fail-fix” cycle – when engineers develop new hardware, ground-test it to failure to determine the hardware’s design limits under all possible conditions and then tweak accordingly. That capability is increasingly important with the creation of new alloys and designs, new processing techniques, and the introduction of composite overwraps and other innovations.

The RAMPT project did just that, successfully advancing new additive manufacturing alloys and processes, integrating them with carbon-fiber composites to reduce weight by up to 40%, developing and validating new simulation tools – and making all this data available to industry through public-private partnerships.

“We’re able to deliver prototypes in weeks instead of years, conduct dozens of scaled ground tests in a period that would feasibly permit just one or two such tests of conventionally manufactured hardware, and most importantly, deliver technology solutions that are safer, lighter, and less costly than traditional components,” Gradl said.

Fikes added, “Ten years from now, we may be building rocket engines – or rockets themselves – out of entirely new materials, employing all-new processing and fabrication techniques. NASA is central to all of that.”

The RAMPT project continues to progress and receive recognition from NASA and industry partners. On July 31, the RAMPT team was awarded NASA’s 2024 Invention of The Year award for its excellence and contributions to NASA and the commercial industry’s deep space exploration goals.

NASA’s Marshall Spaceflight Center in Huntsville, Alabama, leads RAMPT, with key support among engineers and technologists at NASA’s Glenn Research Center in Cleveland; Ames Research Center in Mountain View, California; Langley Research Center in Hampton, Virginia; and Auburn University in Auburn, Alabama, plus contributions from other academic partners and industry contractors. RAMPT is funded by NASA’s Game Changing Development Program within the agency’s Space Technology Mission Directorate.

Learn more at:

https://www.nasa.gov/rapid-analysis-and-manufacturing-propulsion-technology

Ramon J. Osorio
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
ramon.j.osorio@nasa.gov

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology. 

      With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure. 
      The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most. 
      00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
        View the full article
    • By NASA
      NASA has awarded a task order to Florida Power and Light of Juno Beach, Florida, to provide electric distribution utility service at the agency’s Kennedy Space Center in Florida.
      This is a fixed-price task order with an estimated value of $70 million over five years. The contract consists of a two-year base period beginning July 1, 2025, followed by a two-year and a one-year option period.
      Under the contract, the awardee will provide all management, labor, transportation, facilities, materials, and equipment to provide electric distribution utility service up to and including all meters across the spaceport.
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      -end-
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
    • By NASA
      The Roscosmos Progress 90 cargo craft approaches the International Space Station for a docking to the Poisk module delivering nearly three tons of food, fuel, and supplies replenishing the Expedition 72 crew. Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies to the Expedition 73 crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 92 spacecraft is scheduled to launch at 3:32 p.m. EDT, Thursday, July 3 (12:32 a.m. Baikonur time, Friday, July 4), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 3:10 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 5:27 p.m. on Saturday, July 5. NASA’s rendezvous and docking coverage will begin at 4:45 p.m. on NASA+.
      The Progress 92 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      Ahead of the spacecraft’s arrival, the Progress 90 spacecraft will undock from the Poisk module on Tuesday, July 1. NASA will not stream undocking.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov  
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      Artist’s concept.Credit: NASA NASA announced Monday its latest plans to team up with a streaming service to bring space a little closer to home. Starting this summer, NASA+ live programming will be available on Netflix.
      Audiences now will have another option to stream rocket launches, astronaut spacewalks, mission coverage, and breathtaking live views of Earth from the International Space Station.
      “The National Aeronautics and Space Act of 1958 calls on us to share our story of space exploration with the broadest possible audience,” said Rebecca Sirmons, general manager of NASA+ at the agency’s headquarters in Washington. “Together, we’re committed to a Golden Age of Innovation and Exploration – inspiring new generations – right from the comfort of their couch or in the palm of their hand from their phone.”
      Through this partnership, NASA’s work in science and exploration will become even more accessible, allowing the agency to increase engagement with and inspire a global audience in a modern media landscape, where Netflix reaches a global audience of more than 700 million people.
      The agency’s broader efforts include connecting with as many people as possible through video, audio, social media, and live events. The goal is simple: to bring the excitement of the agency’s discoveries, inventions, and space exploration to people, wherever they are.
      NASA+ remains available for free, with no ads, through the NASA app and on the agency’s website.
      Additional programming details and schedules will be announced ahead of launch.
      For more about NASA’s missions, visit:
      https://www.nasa.gov
      -end-
      Cheryl Warner
      Headquarters, Washington
      202-358-1600
      cheryl.m.warner@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Brand Partnerships NASA+ View the full article
    • By NASA
      2 Min Read NASA Announces Winners of 2025 Human Lander Challenge
      NASA’s Human Lander Challenge marked its second year on June 26, awarding $18,000 in prize money to three university teams for their solutions for long-duration cryogenic, or super chilled, liquid storage and transfer systems for spaceflight.
      Building on the crewed Artemis II flight test, NASA’s Artemis III mission will send astronauts to explore the lunar South Pole region with a human landing system and advanced spacesuits, preparing humanity to ultimately go to Mars. In-space propulsion systems that use cryogenic liquids as propellants must stay extremely cold to remain in a liquid state and are critical to mission success. The Artemis mission architecture will need these systems to function for several weeks or even months.
      Students and advisors with the 12 finalist teams for the 2025 Human Lander Challenge competed in Huntsville, Alabama, near the agency’s Marshall Space Flight Center between June 24-26. NASA/Charles Beason NASA announced Embry-Riddle Aeronautical University, Prescott as the overall winner and recipient of the $10,000 top prize award. Old Dominion University won second place and a $5,000 award, followed by Massachusetts Institute of Technology in third place and a $3,000 award.
      Before the winners were announced, 12 finalist teams selected in April gave their presentations to a panel of NASA and industry judges as part of the final competition in Huntsville. As part of the 2025 Human Lander Challenge, university teams developed systems-level solutions that could be used within the next 3-5 years for Artemis.
      NASA selected Embry-Riddle Aeronautical University, Prescott as the overall winner of NASA’s 2025 Human Lander Challenge Forum June 26. Lisa Watson-Morgan, manager of NASA’s Human Landing System Program, presented the awards at the ceremony. NASA/Charles Beason “Today’s Golden Age of Innovation and Exploration students are tomorrow’s mission designers, systems engineers, and explorers,” said Juan Valenzuela, main propulsion systems and cryogenic fluid management subsystems lead for NASA’s Human Landing System Program at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The Human Lander Challenge concepts at this year’s forum demonstrate the ingenuity, passion, and determination NASA and industry need to help solve long-duration cryogenic storage challenges to advance human exploration to deep space.”
      The challenge is sponsored by the agency’s Human Landing System Program within the Exploration Systems Development Mission Directorate and managed by the National Institute of Aerospace.
      Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      For more information about Artemis missions, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jun 27, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Human Lander Challenge Artemis General Human Landing System Program Humans in Space Marshall Space Flight Center Explore More
      3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 1 week ago 4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Human Landing System
      Space Launch System (SLS)
      Marshall Space Flight Center manages the Space Launch System (SLS), an integrated super heavy lift launch platform enabling a new…
      Humans In Space
      Orion Capsule
      NASA’s Orion spacecraft is built to take humans farther than they’ve ever gone before. Orion will serve as the exploration…
      View the full article
  • Check out these Videos

×
×
  • Create New...