Jump to content

Tech Today: Remote Sensing Technology Fights Forest Fires


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA’s Ikhana Unmanned Aircraft System (UAS).
NASA used its remotely piloted Ikhana aircraft to test technology it helped develop or recommended to the U.S. Forest Service, including a system to send sensor data to decision makers on the ground in near real time.
Credit: NASA

It’s not easy to predict the path of forest fires—a lot depends on constantly changing factors like wind. But it is crucial to be as accurate as possible because the lives, homes, and businesses of the tens of thousands of people living and working in fire-prone areas depend on the reliability of these predictions. Sensors mounted on airplanes or drones that provide a picture of the fire from above are an important tool, and that’s where NASA comes in. 

In partnership with the U.S. Forest Service, local and state firefighting agencies, and the Bureau of Land Management, NASA plays a pivotal role in battling infernos. The agency’s extensive experience and technical expertise in remote sensing technology have significantly improved the speed and accuracy of information relayed to firefighting decision-makers.

According to Don Sullivan, who specialized in information technology design at the time, the Airborne Science Program at NASA’s Ames Research Center in Silicon Valley, California, was integral to that effort.

In the 1990s, NASA began a project to adapt uncrewed aircraft for environmental research. The researchers at Ames wanted to ensure the technology would be useful to the broadest possible spectrum of potential end users. One concept tested during the project was sending data in real-time to the ground via communications links installed on the aircraft.

That link sent data faster and to multiple recipients at once—not just the team on the fire front line, but also the commanders organizing the teams and decision makers looking at the big picture across the entire region throughout the fire season, explained Sullivan.

For the Forest Service, this was a much-needed upgrade to the original system on their crewed jets: rolling up a printout and later thumb drives with thermal sensor data placed into a plastic tube attached to a parachute and dropped out of the airplane. NASA’s remotely piloted aircraft called Ikhana tested the technology, and it’s still used by the agency to collect data on wildfires.

Since the introduction of this technology, wildfires have gotten bigger, burn hotter, and set new records every year. But in California in 2008, this technology helped fight what was then the worst fire season on record. A NASA test flight using a data downlink system provided updated information to the incident managers that was crucial in determining where to send firefighting resources and whether a full evacuation of the town of Paradise was needed.

Without that timely information, said Sullivan, “there likely would have been injuries and certainly property damage that was worse than it turned out to be.”

Share

Details

Last Updated
Jul 31, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      During the Piston Powered Auto-Rama at the I-X Center in Cleveland on Monday, March 31, 2025, NASA Glenn Research Center’s Salvadore Oriti, right, discusses the technology behind free-piston Stirling cycle machines. Credit: NASA/Kristin Jansen  NASA Glenn Research Center’s work in power and propulsion was on full display at the Piston Powered Auto-Rama at the I-X Center in Cleveland, March 28-30. The event is the largest indoor showcase of cars, trucks, motorcycles, tractors, and other engine-powered vehicles. 
      Center staff introduced guests to NASA’s Stirling engine technology, a free-piston Stirling power convertor that set records for accomplishing 14 years of maintenance-free operation at NASA Glenn in 2020. Attendees also explored how NASA is using space nuclear power to reach the deepest, dustiest, darkest, and most distant regions of our solar system through radioisotope power systems.  
      More than 57,500 people attended the event. 
      Return to Newsletter Explore More
      1 min read NASA Glenn Engineer Highlights Research for Hubble Servicing Missions 
      Article 31 mins ago 1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
      Article 31 mins ago 1 min read Specialty NASA Glenn License Plates Available  
      Article 32 mins ago View the full article
    • By NASA
      During World Water Day at Great Lakes Science Center in Cleveland on Friday, March 21, 2025, NASA’s Glenn Research Center staff, left to right, Heather Roe, Debbie Welch, and Jacqueline Minerd show how NASA’s Liquid Cooling and Ventilation Garment uses water to regulate the body temperatures of astronauts during spacewalks.  Credit: NASA/Lillianne Hammel  Water is essential for life, and it is an important engineering tool as well. On March 21, NASA’s Glenn Research Center staff joined Great Lakes Science Center in celebrating World Water Day at the science center, home of the NASA Glenn Visitor Center, in downtown Cleveland. Staff conducted hands-on demonstrations highlighting NASA’s Liquid Cooling and Ventilation Garment during the free day for students.
      A NASA Glenn Research Center staff member demonstrates how NASA’s Liquid Cooling and Ventilation Garment cools down the body using water during World Water Day at Great Lakes Science Center in Cleveland on Friday, March 21, 2025. Credit: NASA/Lillianne Hammel  This interactive activity helped students discover how NASA uses water to regulate the body temperatures of astronauts during spacewalks.  
      Approximately 450 students and educators attended the event.   
      Return to Newsletter Explore More
      1 min read NASA Glenn Engineer Highlights Research for Hubble Servicing Missions 
      Article 21 seconds ago 1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
      Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available  
      Article 1 min ago View the full article
    • By Amazing Space
      X-FLARE Update - Did You See This Giant Solar Flare Today? 13th May - AR4086 Flare and CME
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ICON’s next generation Vulcan construction system 3D printing a simulated Mars habitat for NASA’s Crew Health and Performance Exploration Analog (CHAPEA) missions.ICON One of the keys to a sustainable human presence on distant worlds is using local, or in-situ, resources which includes building materials for infrastructure such as habitats, radiation shielding, roads, and rocket launch and landing pads. NASA’s Space Technology Mission Directorate is leveraging its portfolio of programs and industry opportunities to develop in-situ, resource capabilities to help future Moon and Mars explorers build what they need. These technologies have made exciting progress for space applications as well as some impacts right here on Earth. 
      The Moon to Mars Planetary Autonomous Construction Technology (MMPACT) project, funded by NASA’s Game Changing Development program and managed at the agency’s Marshall Space Flight Center in Huntsville, Alabama, is exploring applications of large-scale, robotic 3D printing technology for construction on other planets. It sounds like the stuff of science fiction, but demonstrations using simulated lunar and Martian surface material, known as regolith, show the concept could become reality. 
      Lunar 3D printing prototype.Contour Crafting With its partners in industry and academic institutions, MMPACT is developing processing technologies for lunar and Martian construction materials. The binders for these materials, including water, could be extracted from the local regolith to reduce launch mass. The regolith itself is used as the aggregate, or granular material, for these concretes. NASA has evaluated these materials for decades, initially working with large-scale 3D printing pioneer, Dr. Behrokh Khoshnevis, a professor of civil, environmental and astronautical engineering at the University of Southern California in Los Angeles.  
      Khoshnevis developed techniques for large-scale extraterrestrial 3D printing under the NASA Innovative Advanced Concepts (NIAC) program. One of these processes is Contour Crafting, in which molten regolith and a binding agent are extruded from a nozzle to create infrastructure layer by layer. The process can be used to autonomously build monolithic structures like radiation shielding and rocket landing pads. 
      Continuing to work with the NIAC program, Khoshnevis also developed a 3D printing method called selective separation sintering, in which heat and pressure are applied to layers of powder to produce metallic, ceramic, or composite objects which could produce small-scale, more-precise hardware. This energy-efficient technique can be used on planetary surfaces as well as in microgravity environments like space stations to produce items including interlocking tiles and replacement parts. 
      While NASA’s efforts are ultimately aimed at developing technologies capable of building a sustainable human presence on other worlds, Khoshnevis is also setting his sights closer to home. He has created a company called Contour Crafting Corporation that will use 3D printing techniques advanced with NIAC funding to fabricate housing and other infrastructure here on Earth.  
      Another one of NASA’s partners in additive manufacturing, ICON of Austin, Texas, is doing the same, using 3D printing techniques for home construction on Earth, with robotics, software, and advanced material.  
      Construction is complete on a 3D-printed, 1,700-square-foot habitat that will simulate the challenges of a mission to Mars at NASA’s Johnson Space Center in Houston, Texas. The habitat will be home to four intrepid crew members for a one-year Crew Health and Performance Analog, or CHAPEA, mission. The first of three missions begins in the summer of 2023. The ICON company was among the participants in NASA’s 3D-Printed Habitat Challenge, which aimed to advance the technology needed to build housing in extraterrestrial environments. In 2021, ICON used its large-scale 3D printing system to build a 1,700 square-foot simulated Martian habitat that includes crew quarters, workstations and common lounge and food preparation areas. This habitat prototype, called Mars Dune Alpha, is part of NASA’s ongoing Crew Health and Performance Exploration Analog, a series of Mars surface mission simulations scheduled through 2026 at NASA’s Johnson Space Center in Houston.  
      With support from NASA’s Small Business Innovation Research program, ICON is also developing an Olympus construction system, which is designed to use local resources on the Moon and Mars as building materials. 
      The ICON company uses a robotic 3D printing technique called Laser Vitreous Multi-material Transformation, in which high-powered lasers melt local surface materials, or regolith, that then solidify to form strong, ceramic-like structures. Regolith can similarly be transformed to create infrastructure capable of withstanding environmental hazards like corrosive lunar dust, as well as radiation and temperature extremes.  
      The company is also characterizing the gravity-dependent properties of simulated lunar regolith in an experiment called Duneflow, which flew aboard a Blue Origin reusable suborbital rocket system through NASA’s Flight Opportunities program in February 2025. During that flight test, the vehicle simulated lunar gravity for approximately two minutes, enabling ICON and researchers from NASA to compare the behavior of simulant against real regolith obtained from the Moon during an Apollo mission.    
      Learn more: https://www.nasa.gov/space-technology-mission-directorate/  
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More …
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      STMD Solicitations and Opportunities
      Technology
      Share
      Details
      Last Updated May 13, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
    • By European Space Agency
      Just a week after its launch, ESA’s Biomass mission has reached another critical milestone on its path to delivering unprecedented insights into the world’s forests and their vital role in Earth’s carbon cycle – the satellite’s 12-metre-diameter antenna is now fully deployed.
      View the full article
  • Check out these Videos

×
×
  • Create New...