Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Sols 4255-4256: Just Passing Through

Navcam Left image of our stowed arm turret, including the drill as it rests between drill campaigns
Navcam Left image of our stowed arm turret, including the drill as it rests between drill campaigns
NASA/JPL-Caltech

Earth planning date: Wednesday, July 24, 2024

Happy Wednesday, terrestrials! We wrapped up our Mammoth Lakes drill campaign only three weeks ago and are already looking for our next drill site. This will be the last drill campaign in the Gediz Vallis region, an area on Mars the Curiosity team has had their eyes on since sol 0, just under 12 years ago! This upcoming campaign is even more exciting after the elemental sulfur we found at Mammoth Lakes. And while sulfur on its own doesn’t smell, I’ve always wondered… what does Mars smell like? 

Finding ourselves less than a meter from our hopeful end-of-drive on Monday, we started on a very familiar plan: Starting with an arm backbone for removing dust and using APXS to investigate a bedrock target named “Russell Pass,” placing the arm out of the way for imaging, spending just over an hour on Mastcam imaging and ChemCam LIBS on Russell Pass, then one more arm backbone for MAHLI images of Russell Pass, and finally a drive in the afternoon. These plans, dubbed “touch-and-go” plans, are usually busy at the start and slow at the end. Our drive this time is planned to go ~10 meters almost perfectly east and leaving our heading almost perfectly west. If on Friday, our wheels are solidly on the Martian ground and there is a flat-enough bedrock surface to place our drill, we might be staying put for another two weeks while we try and collect another Gediz Vallis channel sample. And since we drive backwards with the arm taking up the rear, we might even have a workspace we’ve already driven over – hopefully exposing some internal bedrock even before drilling.

Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems

Share

Details

Last Updated
Jul 29, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA Expands SPHEREx Science Return Through Commercial Partnership
      A sectional rendering of NASA's SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer). Credits: NASA NASA is partnering with commercial industry to expand our knowledge of Earth, our solar system, and beyond. Recently, NASA collaborated with Kongsberg Satellite Services (KSAT) to support data transfer for the agency’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. 
      “Not only is NASA moving toward commercialization, the agency is making technological advancements to existing systems and saving millions of dollars in the process — all while expanding human knowledge through science and exploration missions,” said Kevin Coggins, associate administrator for NASA’s SCaN (Space Communications and Navigation) program.
      To receive data from missions in space, NASA relies on the Near Space Network and Deep Space Network, a collection of antennas around the globe.
      In preparation for the recently-launched SPHEREx observatory, NASA needed to upgrade an antenna on the world’s most remote continent: Antarctica.
      Transmitted via NASA’s Near Space Network, this video shows SPHEREx scanning a region of the Large Magellanic Cloud. The shifting colors represent different infrared wavelengths detected by the telescope’s two arrays. Credit: NASA/JPL-Caltech NASA’s SCaN program took a novel approach by leveraging its established commercial partnership with KSAT. While upgraded KSAT antennas were added to the Near Space Network in 2023, SPHEREx required an additional Antarctic antenna that could link to online data storage.
      To support SPHEREx’s polar orbit, KSAT upgraded its Troll, Antarctica antenna and incorporated their own cloud storage system. NASA then connected KSAT’s cloud to the NASA cloud, DAPHNE+ (Data Acquisition Process and Handling Environment).
      As the Near Space Network’s operational cloud services system, DAPHNE+ enables science missions to transmit their data to the network for virtual file storage, processing, and management. 
      “By connecting the Troll antenna to DAPHNE+, we eliminated the need for large, undersea fiberoptic cables by virtually connecting private and government-owned cloud systems, reducing the project’s cost and complexity,” said Matt Vincent, the SPHEREx mission manager for the Near Space Network at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Each day, SPHEREx downlinks a portion of its 20 gigabits of science data through the Troll antenna, which transfers the files across KSAT’s network of relay satellites to the DAPHNE+ cloud. The cloud system combines and centralizes the data from each antenna, allowing access to all of SPHEREx’s health and science data in one convenient place. 
      The SPHEREx mission data is transmitted from space to the Troll Satellite Station, relayed through a network of satellites, and stored in the Near Space Network’s cloud system for easily-accessible analysis by scientists around the world.NASA/Dave Ryan With coverage throughout its orbit, SPHEREx transmits its 3D maps of the celestial sky, offering new insight into what happened a fraction of a second after the big bang. 
      “Missions like SPHEREx use the Near Space Network’s combination of commercial and government antennas,” explained Michael Skube, DAPHNE+ manager at NASA Goddard. “And that is the benefit of DAPHNE+ — it enables the network to pull different sources of information into one central location. The DAPHNE+ system treats government and commercial antennas as part of the same network.” 
      The partnership is mutually beneficial. NASA’s Near Space Network maintains a data connection with SPHEREx as it traverses both poles and KSAT benefits from its antennas’ integration into a robust global network – no new cables required. 
       “We were able to find a networking solution with KSAT that did not require us to put additional hardware in Antarctica,” said Vincent. “Now we are operating with the highest data rate we have ever downlinked from that location.” 
      The upgraded ground station antenna at Troll Satellite Station supports cloud-based space communications, enabling NASA’s Near Space Network to support scientific missions via a wireless cloud network.Kongsberg Satellite Services For NASA, its commercial partners, and other global space agencies, this expansion means more reliable space communications with fewer expenses. 
      Troll’s successful integration into the Near Space Network is a case study for future private and government partnerships. As SPHEREx measures the collective glow of over 450 million galaxies as far as 10 billion light-years away, SCaN continues to innovate how its discoveries safely return to Earth. 
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Funding and oversight for DAPHNE+ and the Near Space Network come from the SCaN program office at NASA Headquarters and operate out of NASA’s Goddard Space Flight Center. The Troll Satellite Station is owned and operated by Kongsberg Satellite Services and located in Queen Maud Land, Antarctica. 
      About the Author
      Korine Powers
      Lead Writer and Communications StrategistKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Share
      Details
      Last Updated May 06, 2025 Related Terms
      Communicating and Navigating with Missions Commercial Space Space Communications & Navigation Program SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Sols 4529-4531: Honeycombs and Waffles… on Mars!
      NASA’s Mars rover Curiosity captured this image of its current workspace, containing well-preserved polygonal shaped fractures, with waffle or honeycomb patterns. The rover acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on May 1, 2025 — Sol 4527, or Martian day 4,527 of the Mars Science Laboratory mission — at 16:41:35 UTC. NASA/JPL-Caltech Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick
      Earth planning date: Friday, May 2, 2025
      From our Wednesday stopping spot, the drive direction ahead (looking along the path we would follow in the Wednesday drive) appeared to be full of rough, gnarly material, which can be tricky targets for contact science instruments like APXS. However, coming into planning this morning, we found a workspace with amazingly well preserved polygonal shaped fractures, with raised ridges (about 1 centimeter, or about 0.39 inches, high), looking like a patchwork of honeycombs, or maybe a patch of waffles. We have spotted these before but usually not as well preserved and extensive as this — we can see these stretching away into the distance for 20-30 meters (about 66-98 feet), almost to the edge of the “boxwork” fracture structures at “Ghost Mountain” butte in this Navcam image. We are all counting down the drives to get to the boxwork structures — this will be such an exciting campaign to be part of.
      As APXS operations planner today, I was really interested to see if we could get APXS close to one of the raised ridges, to determine what they are made of. The Rover Planners were able to get a paired set of targets — “Orosco Ridge” along a ridge and “Box Canyon” in the adjacent, flat center of the polygon. The ChemCam team is also interested (in truth, everyone on the team is interested!!) in the composition of the ridges. So ChemCam will use LIBS to measure both bedrock and ridge fill at “Kitchen Creek” on the first sol of the plan and “Storm Canyon” on the second sol.  
      The “problem” with a workspace like this is picking which images to take in our short time here, before we drive on the second sol. We could stay here for a week and still find things to look at in this workspace. After much discussion, it was decided that MAHLI should focus on a “dog’s eye” mosaic (“Valley of the Moon”) along the vertical face of the large block. We hope this will allow us to examine how the fractures interact with each other, and with the preexisting layering in the bedrock.  
      Mastcam will then focus on the two main blocks in the workspace in an 8×4 (4 rows of 8 images) Kitchen Creek mosaic, which also encompasses the LIBS target of the same name, and a single image on the Storm Canyon LIBS target. Three smaller mosaics at “Green Valley Falls” (3×1), “Lost Palms Canyon” (7×2) and “San Andreas Fault” (1×2) will examine the relationships between the polygonal features and other fractures in the workspace, close to the rover. 
      Further afield, ChemCam will turn the “LD RMI” (Long-Distance Remote Micro Imager) on “Texoli” butte (the large butte to the side of the rover, visible in this image from sol 4528). Both Mastcam and ChemCam will image the boxwork fracture system near Ghost Mountain — they are so close now, it’s just a few drives away! Any information we get now may be able to help us answer some of the questions we have on the origin and timing of the boxwork structures, especially when we can combine it with the in situ analysis we will be getting shortly! (Did I mention how excited we all are about this campaign?)With all the excitement today on the wild fracture structures, it could be easy to overlook Curiosity’s dataset of environmental and atmospheric data. For more than 12 years now, we have been collecting information on dust and argon levels in the atmosphere, water and chlorine levels in the subsurface, wind speeds, humidity, temperature, ultraviolet radiation, pressure, and capturing movies and images of dust devils. This weekend is no different, adding a full complement of activities from almost every team — Navcam, REMS, DAN, Mastcam, ChemCam, and APXS will all collect data for the environmental and atmospheric theme group (ENV) in this plan.
      Share








      Details
      Last Updated May 06, 2025 Related Terms
      Blogs Explore More
      2 min read Searching for Spherules to Sample


      Article


      11 hours ago
      2 min read Sols 4527-4528: ‘Boxwork Ahoy!’


      Article


      1 day ago
      3 min read Sols 4525-4526: The Day After Groundhog Day (Between Ghost Mountain and Texoli, Headed South)


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By USH
      A few days ago, a rare phenomenon was captured on video in a parking lot in Nashville, Tennessee, during a thunderstorm. 

      The footage shows a large flash, followed by several small fireballs sparking around parked cars, culminating in the appearance of a sizable glowing orb that appears to be a so-called ball lightning. 
      The ball lightning behaved erratically, moving across the lot, triggering car alarms, and causing power fluctuations throughout the area. 
      Ball lightning is a rare and still poorly understood phenomenon, typically described as a rapidly rotating orb of plasma. View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4527-4528: ‘Boxwork Ahoy!’
      NASA’s Mars rover Curiosity acquired this image looking directly west and showing a first ground view of the boxwork structures the rover is driving toward. The boxwork structures are visible in the distance as smoother terrain criss-crossed by ridges, just below the hilltops. Curiosity acquired this image using its Left Navigation Camera on April 30, 2025 – Sol 4526, or Martian day 4,526 of the Mars Science Laboratory mission – at 14:10:41 UTC. NASA/JPL-Caltech Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Earth planning date: Wednesday, April 30, 2025
      We’re back in our standard “touch and go” plan regime today, where we sandwich a midday remote science block between morning-APXS and afternoon-MAHLI contact science arm blocks. We had our first late-slide 9 a.m. PDT start in quite a while due to our “isolated nominal” plan on Monday! This meant the whole team was ready and “patiently” (read: not-so-patiently) waiting for our drive data to come down around 8:40 this morning. Thankfully, everything we were waiting for came down to Earth and told us Curiosity was right where we wanted her to be! The planning begins…
      Sol 4527 contains most of our activities in this plan. We start off about 10:00 local Gale time with a DRT and APXS analysis of contact science target “Tamarack Valley,” a rough but brushable bedrock target in our workspace. We leave the arm unstowed (and out of the way) for our remote science block spanning the hours of about 12:35-13:45. That block starts with a large, 76-frame stereo Mastcam mosaic covering the boxwork structures to the west while ChemCam’s instrument cools down to allow for LIBS.
      After Mastcam is done, ChemCam shoots their LIBS on a rougher bedrock target named “Aguanga,” and an RMI mosaic of the boxwork structures included in the Mastcam mosaic. About 14:00 local time, MAHLI finishes the contact science with a full suite of Tamarack Valley (25-centimeter, 5-centimeter stereo, and 1-centimeter images). Then we drive! Hopefully about 30 meters closer (about 98 feet) to the boxwork structures for our weekend plan. 
      Curiosity takes the second sol easier with some Navcam dust-devil and horizon movies, along with a rover-decided LIBS target at our new location to start off science decisions for Friday.
      Share








      Details
      Last Updated May 04, 2025 Related Terms
      Blogs Explore More
      3 min read Sols 4525-4526: The Day After Groundhog Day (Between Ghost Mountain and Texoli, Headed South)


      Article


      4 days ago
      4 min read Sols 4522-4524: Up on the Roof


      Article


      5 days ago
      2 min read Searching for the Dark in the Light


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      3 Min Read NASA Invests in Future STEM Workforce Through Space Grant Awards 
      NASA is awarding up to $870,000 annually to 52 institutions across the United States, the District of Columbia, and Puerto Rico over the next four years. The investments aim to create opportunities for the next generation of innovators by supporting workforce development, science, technology, engineering and math education, and aerospace collaboration nationwide. 
      The Space Grant College and Fellowship Program (Space Grant), established by Congress in 1989, is a workforce development initiative administered through NASA’s Office of STEM Engagement (OSTEM). The program’s mission is to produce a highly skilled workforce prepared to advance NASA’s mission and bolster the nation’s aerospace sector. 
      “The Space Grant program exemplifies NASA’s commitment to cultivating a new generation of STEM leaders,” said Torry Johnson, deputy associate administrator of the STEM Engagement Program at NASA Headquarters in Washington. “By partnering with institutions across the country, we ensure that students have the resources, mentorship, and experiences needed to thrive in the aerospace workforce.” 
      The following is a complete list of awardees: 
      University of Alaska, Fairbanks  University of Alabama, Huntsville  University of Arkansas, Little Rock  University of Arizona  University of California, San Diego  University of Colorado, Boulder  University of Hartford, Connecticut  American University, Washington, DC  University of Delaware  University of Central Florida  Georgia Institute of Technology  University of Hawaii, Honolulu  Iowa State University, Ames  University of Idaho, Moscow  University of Illinois, Urbana-Champaign  Purdue University, Indiana  Wichita State University, Kansas  University of Kentucky, Lexington  Louisiana State University and A&M College  Massachusetts Institute of Technology  Johns Hopkins University, Maryland  Maine Space Grant Consortium  University of Michigan, Ann Arbor  University of Minnesota  Missouri University of Science and Technology  University of Mississippi  Montana State University, Bozeman  North Carolina State University  University of North Dakota, Grand Forks  University of Nebraska, Omaha  University of New Hampshire, Durham  Rutgers University, New Brunswick, New Jersey  New Mexico State University  Nevada System of Higher Education  Cornell University, New York  Ohio Aerospace Institute  University of Oklahoma  Oregon State University  Pennsylvania State University  University of Puerto Rico  Brown University, Rhode Island  College of Charleston, South Carolina  South Dakota School of Mines & Technology  Vanderbilt University, Tennessee  University of Texas, Austin  University of Utah, Salt Lake City  Old Dominion University Research Foundation, Virginia  University of Vermont, Burlington  University of Washington, Seattle  Carthage College, Wisconsin  West Virginia University  University of Wyoming  Space Grant operates through state-based consortia, which include universities, university systems, associations, government agencies, industries, and informal education organizations engaged in aerospace activities. Each consortium’s lead institution coordinates efforts within its state, expanding opportunities for students and researchers while promoting collaboration with NASA and aerospace-related industries nationwide. 
      To learn more about NASA’s missions, visit: https://www.nasa.gov/ 

      View the full article
  • Check out these Videos

×
×
  • Create New...