Jump to content

NASA’s Fermi Finds New Feature in Brightest Gamma-Ray Burst Yet Seen


Recommended Posts

  • Publishers
Posted

4 min read

NASA’s Fermi Finds New Feature in Brightest Gamma-Ray Burst Yet Seen

In October 2022, astronomers were stunned by what was quickly dubbed the BOAT — the brightest-of-all-time gamma-ray burst (GRB). Now an international science team reports that data from NASA’s Fermi Gamma-ray Space Telescope reveals a feature never seen before.

The brightest gamma-ray burst yet recorded gave scientists a new high-energy feature to study. Learn what NASA’s Fermi mission saw, and what this feature may be telling us about the burst’s light-speed jets. Credit: NASA’s Goddard Space Flight Center

“A few minutes after the BOAT erupted, Fermi’s Gamma-ray Burst Monitor recorded an unusual energy peak that caught our attention,” said lead researcher Maria Edvige Ravasio at Radboud University in Nijmegen, Netherlands, and affiliated with Brera Observatory, part of INAF (the Italian National Institute of Astrophysics) in Merate, Italy. “When I first saw that signal, it gave me goosebumps. Our analysis since then shows it to be the first high-confidence emission line ever seen in 50 years of studying GRBs.”

A paper about the discovery appears in the July 26 edition of the journal Science.

When matter interacts with light, the energy can be absorbed and reemitted in characteristic ways. These interactions can brighten or dim particular colors (or energies), producing key features visible when the light is spread out, rainbow-like, in a spectrum. These features can reveal a wealth of information, such as the chemical elements involved in the interaction. At higher energies, spectral features can uncover specific particle processes, such as matter and antimatter annihilating to produce gamma rays.

“While some previous studies have reported possible evidence for absorption and emission features in other GRBs, subsequent scrutiny revealed that all of these could just be statistical fluctuations. What we see in the BOAT is different,” said coauthor Om Sharan Salafia at INAF-Brera Observatory in Milan, Italy. “We’ve determined that the odds this feature is just a noise fluctuation are less than one chance in half a billion.”

Illustration of a particle jet emerging from a dying star
A jet of particles moving at nearly light speed emerges from a massive star in this artist’s concept. The star’s core ran out of fuel and collapsed into a black hole. Some of the matter swirling toward the black hole was redirected into dual jets firing in opposite directions. We see a gamma-ray burst when one of these jets happens to point directly at Earth.
NASA’s Goddard Space Flight Center Conceptual Image Lab

GRBs are the most powerful explosions in the cosmos and emit copious amounts of gamma rays, the highest-energy form of light. The most common type occurs when the core of a massive star exhausts its fuel, collapses, and forms a rapidly spinning black hole. Matter falling into the black hole powers oppositely directed particle jets that blast through the star’s outer layers at nearly the speed of light. We detect GRBs when one of these jets points almost directly toward Earth.

The BOAT, formally known as GRB 221009A, erupted Oct. 9, 2022, and promptly saturated most of the gamma-ray detectors in orbit, including those on Fermi. This prevented them from measuring the most intense part of the blast. Reconstructed observations, coupled with statistical arguments, suggest the BOAT, if part of the same population as previously detected GRBs, was likely the brightest burst to appear in Earth’s skies in 10,000 years.

The putative emission line appears almost 5 minutes after the burst was detected and well after it had dimmed enough to end saturation effects for Fermi. The line persisted for at least 40 seconds, and the emission reached a peak energy of about 12 MeV (million electron volts). For comparison, the energy of visible light ranges from 2 to 3 electron volts.

So what produced this spectral feature? The team thinks the most likely source is the annihilation of electrons and their antimatter counterparts, positrons.

“When an electron and a positron collide, they annihilate, producing a pair of gamma rays with an energy of 0.511 MeV,” said coauthor Gor Oganesyan at Gran Sasso Science Institute and Gran Sasso National Laboratory in L’Aquila, Italy. “Because we’re looking into the jet, where matter is moving at near light speed, this emission becomes greatly blueshifted and pushed toward much higher energies.”

If this interpretation is correct, to produce an emission line peaking at 12 MeV, the annihilating particles had to have been moving toward us at about 99.9% the speed of light.

“After decades of studying these incredible cosmic explosions, we still don’t understand the details of how these jets work,” noted Elizabeth Hays, the Fermi project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Finding clues like this remarkable emission line will help scientists investigate this extreme environment more deeply.” 

The Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership managed by Goddard. Fermi was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States.

By Francis Reddy
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      7 min read
      A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery
      A unique new material that shrinks when it is heated and expands when it is cooled could help enable the ultra-stable space telescopes that future NASA missions require to search for habitable worlds.
      Advancements in material technologies are needed to meet the science needs of the next great observatories. These observatories will strive to find, identify, and study exoplanets and their ability to support life. Credit: NASA JPL One of the goals of NASA’s Astrophysics Division is to determine whether we are alone in the universe. NASA’s astrophysics missions seek to answer this question by identifying planets beyond our solar system (exoplanets) that could support life. Over the last two decades, scientists have developed ways to detect atmospheres on exoplanets by closely observing stars through advanced telescopes. As light passes through a planet’s atmosphere or is reflected or emitted from a planet’s surface, telescopes can measure the intensity and spectra (i.e., “color”) of the light, and can detect various shifts in the light caused by gases in the planetary atmosphere. By analyzing these patterns, scientists can determine the types of gasses in the exoplanet’s atmosphere.
      Decoding these shifts is no easy task because the exoplanets appear very near their host stars when we observe them, and the starlight is one billion times brighter than the light from an Earth-size exoplanet. To successfully detect habitable exoplanets, NASA’s future Habitable Worlds Observatory will need a contrast ratio of one to one billion (1:1,000,000,000).
      Achieving this extreme contrast ratio will require a telescope that is 1,000 times more stable than state-of-the-art space-based observatories like NASA’s James Webb Space Telescope and its forthcoming Nancy Grace Roman Space Telescope. New sensors, system architectures, and materials must be integrated and work in concert for future mission success. A team from the company ALLVAR is collaborating with NASA’s Marshall Space Flight Center and NASA’s Jet Propulsion Laboratory to demonstrate how integration of a new material with unique negative thermal expansion characteristics can help enable ultra-stable telescope structures.
      Material stability has always been a limiting factor for observing celestial phenomena. For decades, scientists and engineers have been working to overcome challenges such as micro-creep, thermal expansion, and moisture expansion that detrimentally affect telescope stability. The materials currently used for telescope mirrors and struts have drastically improved the dimensional stability of the great observatories like Webb and Roman, but as indicated in the Decadal Survey on Astronomy and Astrophysics 2020 developed by the National Academies of Sciences, Engineering, and Medicine, they still fall short of the 10 picometer level stability over several hours that will be required for the Habitable Worlds Observatory. For perspective, 10 picometers is roughly 1/10th the diameter of an atom.

      NASA’s Nancy Grace Roman Space Telescope sits atop the support structure and instrument payloads. The long black struts holding the telescope’s secondary mirror will contribute roughly 30% of the wave front error while the larger support structure underneath the primary mirror will contribute another 30%.
      Credit: NASA/Chris Gunn
      Funding from NASA and other sources has enabled this material to transition from the laboratory to the commercial scale. ALLVAR received NASA Small Business Innovative Research (SBIR) funding to scale and integrate a new alloy material into telescope structure demonstrations for potential use on future NASA missions like the Habitable Worlds Observatory. This alloy shrinks when heated and expands when cooled—a property known as negative thermal expansion (NTE). For example, ALLVAR Alloy 30 exhibits a -30 ppm/°C coefficient of thermal expansion (CTE) at room temperature. This means that a 1-meter long piece of this NTE alloy will shrink 0.003 mm for every 1 °C increase in temperature. For comparison, aluminum expands at +23 ppm/°C.

      While other materials expand while heated and contract when cooled, ALLVAR Alloy 30 exhibits a negative thermal expansion, which can compensate for the thermal expansion mismatch of other materials. The thermal strain versus temperature is shown for 6061 Aluminum, A286 Stainless Steel, Titanium 6Al-4V, Invar 36, and ALLVAR Alloy 30.
      Because it shrinks when other materials expand, ALLVAR Alloy 30 can be used to strategically compensate for the expansion and contraction of other materials. The alloy’s unique NTE property and lack of moisture expansion could enable optic designers to address the stability needs of future telescope structures. Calculations have indicated that integrating ALLVAR Alloy 30 into certain telescope designs could improve thermal stability up to 200 times compared to only using traditional materials like aluminum, titanium, Carbon Fiber Reinforced Polymers (CFRPs), and the nickel–iron alloy, Invar.
      The hexapod assembly with six ALLVAR Alloy struts was measured for long-term stability. The stability of the individual struts and the hexapod assembly were measured using interferometry at the University of Florida’s Institute for High Energy Physics and Astrophysics. The struts were found to have a length noise well below the proposed target for the success criteria for the project. Credit: (left) ALLVAR and (right) Simon F. Barke, Ph.D. To demonstrate that negative thermal expansion alloys can enable ultra-stable structures, the ALLVAR team developed a hexapod structure to separate two mirrors made of a commercially available glass ceramic material with ultra-low thermal expansion properties. Invar was bonded to the mirrors and flexures made of Ti6Al4V—a titanium alloy commonly used in aerospace applications—were attached to the Invar. To compensate for the positive CTEs of the Invar and Ti6Al4V components, an NTE ALLVAR Alloy 30 tube was used between the Ti6Al4V flexures to create the struts separating the two mirrors. The natural positive thermal expansion of the Invar and Ti6Al4V components is offset by the negative thermal expansion of the NTE alloy struts, resulting in a structure with an effective zero thermal expansion.
      The stability of the structure was evaluated at the University of Florida Institute for High Energy Physics and Astrophysics. The hexapod structure exhibited stability well below the 100 pm/√Hz target and achieved 11 pm/√Hz. This first iteration is close to the 10 pm stability required for the future Habitable Worlds Observatory. A paper and presentation made at the August 2021 Society of Photo-Optical Instrumentation Engineers conference provides details about this analysis.
      Furthermore, a series of tests run by NASA Marshall showed that the ultra-stable struts were able to achieve a near-zero thermal expansion that matched the mirrors in the above analysis. This result translates into less than a 5 nm root mean square (rms) change in the mirror’s shape across a 28K temperature change.
      The ALLVAR enabled Ultra-Stable Hexapod Assembly undergoing Interferometric Testing between 293K and 265K (right). On the left, the Root Mean Square (RMS) changes in the mirror’s surface shape are visually represented. The three roughly circular red areas are caused by the thermal expansion mismatch of the invar bonding pads with the ZERODUR mirror, while the blue and green sections show little to no changes caused by thermal expansion. The surface diagram shows a less than 5 nanometer RMS change in mirror figure. Credit: NASA’s X-Ray and Cryogenic Facility [XRCF] Beyond ultra-stable structures, the NTE alloy technology has enabled enhanced passive thermal switch performance and has been used to remove the detrimental effects of temperature changes on bolted joints and infrared optics. These applications could impact technologies used in other NASA missions. For example, these new alloys have been integrated into the cryogenic sub-assembly of Roman’s coronagraph technology demonstration. The addition of NTE washers enabled the use of pyrolytic graphite thermal straps for more efficient heat transfer. ALLVAR Alloy 30 is also being used in a high-performance passive thermal switch incorporated into the UC Berkeley Space Science Laboratory’s Lunar Surface Electromagnetics Experiment-Night (LuSEE Night) project aboard Firefly Aerospace’s Blue Ghost Mission 2, which will be delivered to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative. The NTE alloys enabled smaller thermal switch size and greater on-off heat conduction ratios for LuSEE Night.
      Through another recent NASA SBIR effort, the ALLVAR team worked with NASA’s Jet Propulsion Laboratory to develop detailed datasets of ALLVAR Alloy 30 material properties. These large datasets include statistically significant material properties such as strength, elastic modulus, fatigue, and thermal conductivity. The team also collected information about less common properties like micro-creep and micro-yield. With these properties characterized, ALLVAR Alloy 30 has cleared a major hurdle towards space-material qualification.
      As a spinoff of this NASA-funded work, the team is developing a new alloy with tunable thermal expansion properties that can match other materials or even achieve zero CTE. Thermal expansion mismatch causes dimensional stability and force-load issues that can impact fields such as nuclear engineering, quantum computing, aerospace and defense, optics, fundamental physics, and medical imaging. The potential uses for this new material will likely extend far beyond astronomy. For example, ALLVAR developed washers and spacers, are now commercially available to maintain consistent preloads across extreme temperature ranges in both space and terrestrial environments. These washers and spacers excel at counteracting the thermal expansion and contraction of other materials, ensuring stability for demanding applications.
      For additional details, see the entry for this project on NASA TechPort.
      Project Lead: Dr. James A. Monroe, ALLVAR
      The following NASA organizations sponsored this effort: NASA Astrophysics Division, NASA SBIR Program funded by the Space Technology Mission Directorate (STMD).
      Share








      Details
      Last Updated Jul 01, 2025 Related Terms
      Technology Highlights Astrophysics Astrophysics Division Science-enabling Technology Explore More
      7 min read NASA Webb ‘Pierces’ Bullet Cluster, Refines Its Mass


      Article


      1 day ago
      2 min read Hubble Captures an Active Galactic Center


      Article


      4 days ago
      2 min read NASA Citizen Scientists Find New Eclipsing Binary Stars


      Article


      5 days ago
      View the full article
    • By Amazing Space
      LIVE - Earth From Space Views - Seen From The ISS
    • By European Space Agency
      Video: 00:04:13 Daniel Neuenschwander, ESA head of Space and Robotic Exploration, explains that Ignis mission will include an ambitious technological and scientific programme with several experiments led by ESA and proposed by the Polish space industry.
      On 26 June 2025, ESA project astronaut Sławosz Uznański-Wiśniewski from Poland and his crewmates arrived to the International Space Station on the Axiom-4 mission (Ax-4).
      The Polish project astronaut is the second of a new generation of European astronauts to fly on a commercial human spaceflight opportunity with Axiom Space.
      View the full article
    • By European Space Agency
      At the Living Planet Symposium, attendees have been hearing how ESA’s Next Generation Gravity Mission could provide the first opportunity to directly track a vital ocean circulation system that warms our planet – but is now weakening, risking a possible collapse with far-reaching consequences.
      View the full article
    • By NASA
      6 Min Read NASA’s Chandra Shares a New View of Our Galactic Neighbor
      The Andromeda galaxy, also known as Messier 31 (M31), is the closest spiral galaxy to the Milky Way at a distance of about 2.5 million light-years. Astronomers use Andromeda to understand the structure and evolution of our own spiral, which is much harder to do since Earth is embedded inside the Milky Way.
      The galaxy M31 has played an important role in many aspects of astrophysics, but particularly in the discovery of dark matter. In the 1960s, astronomer Vera Rubin and her colleagues studied M31 and determined that there was some unseen matter in the galaxy that was affecting how the galaxy and its spiral arms rotated. This unknown material was named “dark matter.” Its nature remains one of the biggest open questions in astrophysics today, one which NASA’s upcoming Nancy Grace Roman Space Telescope is designed to help answer.
      X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major This new composite image contains data of M31 taken by some of the world’s most powerful telescopes in different kinds of light. This image includes X-rays from NASA’s Chandra X-ray Observatory and ESA’s (European Space Agency’s) XMM-Newton (represented in red, green, and blue); ultraviolet data from NASA’s retired GALEX (blue); optical data from astrophotographers using ground based telescopes (Jakob Sahner and Tarun Kottary); infrared data from NASA’s retired Spitzer Space Telescope, the Infrared Astronomy Satellite, COBE, Planck, and Herschel (red, orange, and purple); and radio data from the Westerbork Synthesis Radio Telescope (red-orange).
      The Andromeda Galaxy (M31) in Different Types of Light.X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major Each type of light reveals new information about this close galactic relative to the Milky Way. For example, Chandra’s X-rays reveal the high-energy radiation around the supermassive black hole at the center of M31 as well as many other smaller compact and dense objects strewn across the galaxy. A recent paper about Chandra observations of M31 discusses the amount of X-rays produced by the supermassive black hole in the center of the galaxy over the last 15 years. One flare was observed in 2013, which appears to represent an amplification of the typical X-rays seen from the black hole.
      These multi-wavelength datasets are also being released as a sonification, which includes the same wavelengths of data in the new composite. In the sonification, the layer from each telescope has been separated out and rotated so that they stack on top of each other horizontally, beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes, from lower-energy radio waves up through the high energy of X-rays. Meanwhile, the brightness of each source controls volume, and the vertical location dictates the pitch.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      In this sonification of M31, the layers from each telescope has been separated out and rotated so that they stack on top of each other horizontally beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes ranging from lower-energy radio waves up through the high-energy of X-rays. Meanwhile, the brightness of each source controls volume and the vertical location dictates the pitch.NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida This new image of M31 is released in tribute to the groundbreaking legacy of Dr. Vera Rubin, whose observations transformed our understanding of the universe. Rubin’s meticulous measurements of Andromeda’s rotation curve provided some of the earliest and most convincing evidence that galaxies are embedded in massive halos of invisible material — what we now call dark matter. Her work challenged long-held assumptions and catalyzed a new era of research into the composition and dynamics of the cosmos. In recognition of her profound scientific contributions, the United States Mint has recently released a quarter in 2025 featuring Rubin as part of its American Women Quarters Program — making her the first astronomer honored in the series.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features several images and a sonification video examining the Andromeda galaxy, our closest spiral galaxy neighbor. This collection helps astronomers understand the evolution of the Milky Way, our own spiral galaxy, and provides a fascinating insight into astronomical data gathering and presentation.
      Like all spiral galaxies viewed at this distance and angle, Andromeda appears relatively flat. Its spiraling arms circle around a bright core, creating a disk shape, like a large dinner plate. In most of the images in this collection, Andromeda’s flat surface is tilted to face our upper left.
      This collection features data from some of the world’s most powerful telescopes, each capturing light in a different spectrum. In each single-spectrum image, Andromeda has a similar shape and orientation, but the colors and details are dramatically different.
      In radio waves, the spiraling arms appear red and orange, like a burning, loosely coiled rope. The center appears black, with no core discernible. In infrared light, the outer arms are similarly fiery. Here, a white spiraling ring encircles a blue center with a small golden core. The optical image is hazy and grey, with spiraling arms like faded smoke rings. Here, the blackness of space is dotted with specks of light, and a small bright dot glows at the core of the galaxy. In ultraviolet light the spiraling arms are icy blue and white, with a hazy white ball at the core. No spiral arms are present in the X-ray image, making the bright golden core and nearby stars clear and easy to study.
      In this release, the single-spectrum images are presented side by side for easy comparison. They are also combined into a composite image. In the composite, Andromeda’s spiraling arms are the color of red wine near the outer edges, and lavender near the center. The core is large and bright, surrounded by a cluster of bright blue and green specks. Other small flecks in a variety of colors dot the galaxy, and the blackness of space surrounding it.
      This release also features a thirty second video, which sonifies the collected data. In the video, the single-spectrum images are stacked vertically, one atop the other. As the video plays, an activation line sweeps across the stacked images from left to right. Musical notes ring out when the line encounters light. The lower the wavelength energy, the lower the pitches of the notes. The brighter the source, the louder the volume.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 EditorLee MohonContactLane Figueroa Related Terms
      Andromeda Galaxy Chandra X-Ray Observatory Galaxies Marshall Astrophysics Marshall Space Flight Center The Universe Explore More
      6 min read NICER Status Updates
      Article 1 day ago 2 min read Hubble Studies Small but Mighty Galaxy
      This portrait from the NASA/ESA Hubble Space Telescope puts the nearby galaxy NGC 4449 in…
      Article 5 days ago 3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field
      For 540 million years, the ebb and flow in the strength of Earth’s magnetic field…
      Article 1 week ago View the full article
  • Check out these Videos

×
×
  • Create New...