Jump to content

Former Space Communications, Navigation Interns Pioneer NASA’s Future


Recommended Posts

  • Publishers
Posted
11 Min Read

Former Space Communications, Navigation Interns Pioneer NASA’s Future

Interns visiting Wallops Flight Facility jumping in a fun photo at the Wallops Island Beach
Interns from the SCaN Internship Project visiting NASA's Wallops Flight Facility in Wallops Island, Virginia.
Credits: NASA

For over a decade, NASA’s SCaN (Space Communications and Navigation) Internship Project alumni have played important roles in extending the agency’s long-term vision for exploration. For National Intern Day on Thursday, July 25, previous program interns reflect on their journeys to and through NASA and offer advice for current and future interns. 

Every summer interns join NASA’s SIP (SCaN Internship Project) program to advance the capabilities of the agency’s Deep and Near Space Networks that enable missions to communicate and navigate. 

The SIP intern program develops the future workforce that will imagine, maintain, and operate the next generation of communications and navigation systems. In addition to interns’ main projects, which can range from network engineering and orbital mathematics to mission awareness campaigns and graphic design, SIP interns participate in programming that enhances their professional development and networking skills. 

Justin Long

Justin Long was a SIP intern in 2017 while earning his degree in electrical engineering.

Before he applied for an internship, Long was set on working in space communications at NASA and looked out for opportunities to deepen his aerospace experience. Long attributes his work at the University of Alaska Fairbanks’ CubeSat lab for his acceptance into the intern program, as well as his university’s unique partnership with NASA.

“On my morning walks, I would pass by several of the Near Space Network ground stations operated by the Alaska Satellite Facility at the University of Alaska Fairbanks,” Long said. “At the time I was working on a ground station for our CubeSat program, so I went to intern.nasa.gov and searched anything space communications-related.”

Long was selected for a project at NASA’s Wallops Flight Facility in Virginia focused on ground station improvements to the agency’s Near Space Network. In addition to looking at hardware upgrades for NASA-owned ground stations, Long also explored opportunities to expand the network by integrating commercial and university assets.

Justin Long in a blue long sleeve shirt in front of a picturesque background of mountains and a river.
Justin Long, 2017 SCaN Internship Project (SIP) Intern
Courtesy of Justin Long

Now, Long works as a telecommunications engineer at NASA Goddard, designing antennas and communication systems for spacecraft. His experience with ground stations at NASA Wallops influences his work on spacecraft today.

“Working on communications systems means figuring out what the end-to-end system for a spacecraft looks like, from the radio to the antenna,” Long said. “The internship prepared me to answer questions about how we’re transmitting the data, how fast we can transmit it, and how much data we can receive in one day.”

The major difference between his current role and his intern project is that the hardware he is developing will fly on a spacecraft rather than remain on Earth as part of a ground station antenna. Long will also test his hardware to ensure it functions as expected in orbit. The reward for this rigorous testing is the knowledge that the communications hardware he designed is a critical part of ensuring the spacecraft’s successful operation.

“There is nothing more exciting than working hands-on with a spacecraft,” Long said. “Getting to see the hardware integrated onto the spacecraft — watching the whole thing come together — is my favorite part of the job.”

While Long’s internship allowed him to come into his current position with a broader knowledge base than other engineers at his level of experience, he stresses that the networking opportunities he had with SIP were more important than the intern project itself.

“Even if you have an internship that’s not directly in your field of expertise, the opportunity to network with NASA professionals and meet different groups can have impact on your career,” Long said. “I’m still in contact with people I met as an intern.”

Thomas Montano

Thomas Montano was completing his bachelor’s degree in electrical engineering during his SIP internships in 2019 and 2020. In his current role as an electrical engineer in NASA’s Search and Rescue office at Goddard, Montano supports human spaceflight recovery efforts as well as the development of a lunar search and rescue system.

Thomas Montano during Artemis II Underway Recovery Test 10 in front of the Orion Test Capsule.
Thomas Montano during Artemis II Underway Recovery Test 10.
NASA

Montano was initially interested in digital signal processing and communication systems, so he decided to apply for a SCaN internship.

“It wasn’t really a contest between NASA and other internship programs,” Montano said. “I got to work on cool projects. I got to work with cool people. Goddard is just a place that makes you want to do better and learn things.”

Montano’s first internship was rewriting a software tool for running link budgets, a log of signal gains and losses in a radio communications system. In his second internship, Montano developed a virtual model of the physical transmission environment for lunar communications systems that could combine with the link budget tool to create an end-to-end communication channel simulation.

Both tools continue to be used at the agency today, though Montano’s current position has shifted his focus to the special realities of human spaceflight. Now, Montano is helping NASA test location beacons for the Artemis II astronauts. He describes meeting the Artemis crew while practicing capsule recovery on a U.S. Navy ship as an exciting and sobering reminder of the importance of his work.

“Nothing can top putting boots on the ground,” Montano said. “Meeting the crew made the work all the more real. My work isn’t hypothetical or theoretical. These are real people going to the Moon. My system cannot fail. The search and rescue system cannot go down. Failure really is not an option.”

Nothing can top putting boots on the ground. Meeting the Artemis crew mad the work all the more real.

THomas Montano

THomas Montano

Electrical Engineer at NASA's Goddard Space Flight Center

Montano advises new interns to explore the center, ask questions, and learn how the agency works. He encourages anyone considering an internship to apply. 

“The biggest reason that people don’t get NASA internships is because they don’t apply,” he said. “They count themselves out, and that’s nonsense. If you have good qualifications, go submit your résumé.”

Katrina Lee

Before becoming the engagement coordinator for NASA’s Commercialization, Innovation, and Synergies (CIS) office at Goddard, Katrina Lee was a communications intern with SIP.

For her project, Lee wrote promotional materials highlighting NASA’s then-upcoming LCRD (Laser Communications Relay Demonstration), which launched Dec. 7, 2021. The role required her to research the science behind laser communications and understand the role the technology is playing in advancing communications at NASA. The following summer, Lee applied her experience to writing and producing promotional materials for Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) — LCRD’s first in-space user.

When Lee first joined the program in 2021, she was planning to work in national security. Her internship experience shifted her attention to pursuing a degree in marketing and business. She also joined her student newspaper as a contributing writer.

“The project I was covering resonated with me. I learned that I was really interested in writing and communications,” said Lee. “I homed in on my interest in public-facing opportunities to share very technical information in a digestible way.”

Katrina Lee in a professional outfit on a fall day in front of a traffic sign.
Katrina Lee, SCaN Internship Project (SIP) Intern Summer 2021 and 2022.
Courtesy of Katrina Lee

In her current role, Lee applies the skills she developed as an intern to promote the Near Space Network’s commercialization opportunities. In addition to writing promotional and informational material, Lee manages event logistics, plans and guides center tours for the public and potential partners, attends conferences, and generates ideas for promoting the CIS office.

Lee’s work gives her special insight into the continuing development of the Near Space Network.

“I get to see the future of space exploration in real time,” Lee said. “There’s a greater emphasis on collaboration than we’ve seen in the past, and that collaboration is going to help space communications capabilities go further than ever before.”

When Lee reflects on what aspects of her internship were most important, she returns to the value of her work and her mentor-mentee relationship.

“I felt challenged here,” Lee said. “It was an opportunity to build confidence and learn from your mistakes beside someone who wants you to succeed. It really helped me grow as a professional.”

Lee advises new interns and students considering an internship to remember that mistakes are a valuable part of the experience. “No one at NASA expects you to know everything right away,” Lee said. “They recognize that you’re an intern and you are here to learn. This is a place where you can learn something new every day.”

Unsh Rawal

Unsh Rawal joined SIP in 2022 as a rising high school senior. He came to the program with a passion for robotics and a desire to expand his interests and try new things.

Rawal’s project contributed to the development of an interface that allows students to control robots over local and remote wireless connections. The interface is part of an educational activity for Amateur Radio on the International Space Station (ARISS) exploring telerobotics, or the distant remote control of a robot.

Rawal’s project contributed to the development of an interface that allows students to control robots over local and remote wireless connections. This is him at a computer.
Unsh Rawal, SCaN Internship Project (SIP) Intern Summer 2022.
Courtesy of Unsh Rawal

Rawal continued to develop his project with ARISS beyond his internship. He spent the past winter porting the activity’s code to a Raspberry Pi, a palm-sized minicomputer, while broadening its functionality. His work is key to ARISS’s efforts to distribute accessible, interactive educational tools.

Rawal hopes to return to the intern program to continue his NASA project alongside his educational pursuits. While Rawal came to the intern program planning to pursue a degree in robotics, his project ignited his passion for a new field. “I learned a lot about networking, gained UI and API experience, learned about sockets,” he said. “I learned I really enjoy computer science.”

When asked to share his advice with interns new to the program, Rawal recommends scheduling regular meetings with your project mentor.

“Having consistent meetings with the people supervising the project helps you stay on track and better understand the project requirements,” Rawal said. “They’re an opportunity to learn new things from someone willing to give you one-on-one guidance.”

Lindsay White

Lindsay White was a SIP intern in 2018 and 2019 before joining NASA’s Pathways program in 2020. She completed her internship while earning her master’s degree in electrical engineering, specifically applied electromagnetics.

During her SIP internship, White programmed software-defined radios, a communication system where computer software is used to replace physical radio hardware like modulators and amplifiers, to create test benches for the development of novel signals. That internship evolved into learning more about Field Programmable Gate Arrays (FPGAs) in her second summer, a customizable hardware that can be reconfigured into different digital circuits. White then applied her FPGA knowledge to laser communications missions.

White’s first summer in the internship program confirmed that she wanted to work for NASA. “The environment is so welcoming and supportive,” she said. “People want to answer your questions and help you. I enjoyed the work I was doing and learned a ton.”

White sees a direct relationship between the work she completed as an intern and her current role as a signal analysis engineer at NASA’s Jet Propulsion Laboratory in Southern California. “The work I do now is an evolution of all the work I did as an intern. I’m applying the skills I gained by working in laser communications to my current work in radio communications.”

Lindsey White in a blue NASA polo in front of a grey and black background.
Lindsay White, SCaN Internship Project (SIP) Intern in 2018 and 2019.
NASA

White works on the digital signal processing inside the Mars Sample Return mission’s radio, as well as a research and development project called Universal Space Transponder Lite, a flexible, modular radio with a broad series of potential applications. Sometimes even she is surprised by the importance of her role to NASA’s commitment to space exploration.

“The impact is astonishing,” White said. “My work is essential to a Mars mission. Something I’m touching is going to end up on Mars.”

The impact is astonishing. My work is essential to a Mars mission. Something I'm touching is going to end up on Mars.

Lindsay White

Lindsay White

Signal Analysis Engineer at NASA's Jet Propulsion Laboratory

White advises incoming interns to use their time in the program to develop their understanding of the agency’s personnel and projects. “SIP provides an opportunity to talk with people you otherwise wouldn’t meet,” said White. “Learning the different things NASA is working on can be even more important than hitting stretch goals on your technical project.”

White’s advice for students considering a SIP internship is straightforward: “Do it! Even if you don’t have a technical background, there’s a spot for you at NASA.”

By Korine Powers
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Jul 25, 2024
Editor
Katherine Schauer
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Science Activation Eclipses, Auroras, and the… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
      In the heart of Alaska’s winter, where the night sky stretches endlessly and the aurora dances across the sky in a display of ethereal beauty, nine undergraduate students from across the United States were about to embark on a transformative journey. These students had been active ‘NASA Partner Eclipse Ambassadors’ in their home communities, nine of more than 700 volunteers who shared the science and awe of the 2024 eclipse with hundreds of thousands of people across the country as part of the NASA Science Activation program’s Eclipse Ambassadors project. Now, these nine were chosen to participate in a once-in a lifetime experience as a part of the “Eclipses to Aurora” Winter Field School at the University of Alaska Fairbanks. Organized by the Astronomical Society of the Pacific and NASA’s Aurorasaurus Citizen Science project, supported by NASA, this program offered more than just lectures—it was an immersive experience into the wonders of heliophysics and the profound connections between the Sun and Earth.
      From January 4 to 11, 2025, the students explored the science behind the aurora through seminars on solar and space physics, hands-on experiments, and tours of cutting-edge research facilities like the Poker Flat Research Range. They also gained invaluable insight from Athabaskan elders, who shared local stories and star knowledge passed down through generations. As Feras recalled, “We attended multiple panels on solar and space physics, spoke to local elders on their connection to the auroras, and visited the Poker Flat Research Range to observe the stunning northern lights.”
      For many students, witnessing the aurora was not only a scientific milestone, but a deeply personal and emotional experience. One participant, Andrea, described it vividly: “I looked to the darkest horizon I could find to see my only constant dream fulfilled before my eyes, so slowly dancing and bending to cradle the stars. All I could do, with my hands frozen and tears falling, I began to dream again with my eyes wide open.” Another student, Kalid, reflected on the shared human moment: “Standing there under the vast Alaskan sky… we were all just people, looking up, waiting for something magical. The auroras didn’t care about our majors or our knowledge—they brought us together under the same sky.”
      These moments of wonder were mirrored by a deeper sense of purpose and transformation. “Over the course of the week, I had the incredible opportunity to explore auroras through lectures on solar physics, planetary auroras, and Indigenous star knowledge… and to reflect on these experiences through essays and presentations,” said Sophia. The Winter Field School was more than an academic endeavor—it was a celebration of science, culture, and shared human experience. It fostered not only understanding but unity and awe, reminding everyone involved of the profound interconnectedness of our universe.
      The impact of the program continues to resonate. For many students, that one aurora-lit week in Alaska became a turning point in the focus of their careers. Sophia has since been accepted into graduate school to pursue heliophysics. Vishvi, inspired by the intersection of science and society, will begin a program in medical physics at the University of Pennsylvania this fall. And Christy, moved by her time at the epicenter of aurora research, has applied to the Ph.D. program in Space Physics at the University of Alaska Fairbanks—the very institution that helped spark her journey. Their stories are powerful proof that the Winter Field School didn’t just teach—it awakened purpose, lit new paths, and left footprints on futures still unfolding.
      Eclipse Ambassadors is supported by NASA under cooperative agreement award number 80NSS22M0007 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Participants at the Winter Field School are enjoying the trip to Anchorage, AK. Andy Witteman Share








      Details
      Last Updated May 14, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Auroras Eclipses Opportunities For Students to Get Involved Explore More
      4 min read Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning


      Article


      1 day ago
      6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


      Article


      5 days ago
      6 min read Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman and Italian Air Force Chief of Staff Lt. Gen. Luca Goretti signed a statement of understanding.

      View the full article
    • By NASA
      Editor’s Note: The following is one of three related articles about the NASA Data Acquisition System and related efforts. Please visit Stennis News – NASA to access accompanying articles.
      The NASA Data Acquisition System, developed at NASA Stennis, is used in multiple test areas at NASA’s Marshall Space Flight Center in Huntsville, Alabama, including Test Facility 116. The facility consists of an open-steel test stand structure, primarily used for subscale testing, and three adjacent test bays designed for large-scale/full-scale testing. NASA/Marshall Space Flight Center Teams at NASA’s Langley Research Center in Hampton, Virginia conduct a test in the 8-Foot High-Temperature Tunnel. The NASA Data Acquisition System, developed at NASA Stennis, represents a potential solution for engineers seeking to standardize data systems at NASA Langley. NASA/Langley Research Center Teams at Test Stand 403, located at NASA’s White Sands Test Facility in Las Cruces, New Mexico, plan to use the NASA Data Acquisition System to support testing and development projects related to NASA’s Orion spacecraft.NASA/White Sands Test Facility A data-focused software tool created at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, continues to expand its capabilities and use across the agency.
      Much like the software on a cell phone, the NASA Data Acquisition System (NDAS) software evolves with updates to meet user needs.
      “It is not just because we are seeking new opportunities that we evolve,” said Kris Mobbs, NASA project manager for NDAS. “It is because the community of people using this software tell us about all the new, cool things happening and how they want to use the tool.”
      Created as a standard method for collecting rocket propulsion test data, NDAS is proving to be a building block to acquire, display, and process various datasets. The flexibility of the software has supplied solutions for NASA’s work in New Mexico and Alabama and is being evaluated for data acquisition needs in Virginia.
      When NASA’s White Sands Test Facility in Las Cruces, New Mexico, needed a new data acquisition system with a flexible design, the facility reached out to NASA Stennis since the center had demonstrated success with a similar challenge.
      “A major benefit for the agency is having a software platform that is agency owned and developed,” said Josh Simmons, White Sands technical upgrades lead. “Stennis is leading the way and the way the system is written and documented, other programmers can jump in, and the way they have it designed, it can continue on and that is key.”
      The NASA Stennis team updated its NDAS platform based on input from White Sands personnel to make it more adaptable and to increase data acquisition rates.
      “They look to understand the requirements and to develop an application that is flexible to meet everybody’s requirements,” Simmons said. “They are always willing to improve it, to make it more applicable to a wider audience.”
      NDAS will be the primary data acquisition and control systems to support testing and development projects related to NASA’s Orion spacecraft.
      “I would like to standardize around it here at White Sands,” said Simmons. “I want to show the worth and versatility of NDAS, so people who need it make a choice to use it.”
      Meanwhile at NASA’s Marshall Space Flight Center in Huntsville, Alabama, NDAS is used in multiple areas for small-scale, subscale, and full-scale testing.
      Devin Rios Ogle is a contractor software engineer at NASA Marshall, responsible for integrating and upgrading the data acquisition system in the testing areas. The system is used to record data on test sequences to verify they happen as intended.
      “The visualization of data is really nice compared to other software I have worked with,” said Rios Ogle. “It is easier to see what data you want to see when you want to see it. You select a measurement, and you can see it in graph form, or tabular form, or however you would like. It is visually appealing and very easy to find the stuff you need.”
      Rios Ogle is familiar with the database behind the system and understands what the program is trying to do. He particularly noted the modular approach built into the system, which allows users to adapt the software as needed and is a feature others would find beneficial.
      Marcus Jackson, a contractor instrumentation and control engineer at NASA Marshall, echoed Ogle’s assessment of NDAS, noting that it has allowed the center to condense multiple systems into a single package that meets the team’s unique needs.
      “Ultimately, NDAS provides us with an excellent software package that is built specifically for the kind of work performed here and at other test stands across the United States,” said Jackson. “It is easy to install, manage, and scale up. It doesn’t break, but if you do find a bug or issue, the NDAS team is very quick to respond and help you find a solution.”
      NDAS also represents a potential solution for engineers seeking to standardize data systems at NASA’s Langley Research Center in Hampton, Virginia, a use that could positively impact a mission’s ability to make data-informed decisions.
      “We are investigating alternatives for standardization at all Langley facilities,” said Scott Simmons, NASA Langley data systems engineer. “Standardization has the potential for significant maintenance cost savings and efficiencies because of the sharing of the software. Having an instance of NDAS available for the dynamic data system at the 8-Foot High Temperature tunnel enables us to evaluate it as a potential solution for standardization at Langley.”
      As the nation’s largest hypersonic blow-down test facility, the tunnel duplicates, as near as possible, flight conditions that would be encountered by hypersonic vehicles at up to Mach 6.5, or more than six times the speed of sound.
      Even as its use grows, the NASA Stennis-led software project continues to gain momentum as it expands its capabilities and collaboration with users.
      “The goal is to provide a software portfolio that supports a wide range of exciting NASA projects, involving lots of talented people that collaborate and innovate new software solutions far into the future,” Mobbs said. “This is a community of innovative, ambitious, and supportive engineers and scientists across all engineering disciplines that are dedicated to advancing NASA’s bold missions.”
      Read More Share
      Details
      Last Updated May 08, 2025 Related Terms
      Stennis Space Center View the full article
    • By NASA
      6 min read
      Quantum Sensing via Matter-Wave Interferometry Aboard the International Space Station
      Future space missions could use quantum technologies to help us understand the physical laws that govern the universe, explore the composition of other planets and their moons, gain insights into unexplained cosmological phenomena, or monitor ice sheet thickness and the amount of water in underground aquafers on Earth.
      Upgraded hardware being prepared at Jet Propulsion Lab for launch and install into the Cold Atom Lab on the International Space Station. The Science Module in the background enables CAL researchers to conduct atom interferometry research in Earth’s orbit. Credit: NASA/JPL-Caltech NASA’s Cold Atom Lab (CAL), a first-of-its-kind facility aboard the International Space Station, has performed a series of trailblazing experiments based on the quantum properties of ultracold atoms. The tool used to perform these experiments is called an atom interferometer, and it can precisely measure gravity, magnetic fields, and other forces.
      Atom interferometers are currently being used on Earth to study the fundamental nature of gravity and are also being developed to aid aircraft and ship navigation, but use of an atom interferometer in space will enable innovative science capabilities.
      Physicists have been eager to apply atom interferometry in space, both to enable new measurements for space science and to capitalize on the extended free-fall conditions found in space. This could enable researchers to achieve unprecedented performance from these quantum sensors.
      These interferometers, however, require exquisitely sensitive equipment, and they were previously considered too fragile to function for extended periods without hands-on attention. The Cold Atom Lab, which is operated remotely from Earth, has now demonstrated that it is possible to conduct atom interferometry in space. The CAL Science Team has published two papers so far documenting these experimental milestones.
      Depiction of the atom interferometer (AI) setup onboard the ISS in CAL (on the right), showing the interior components of the instrument, and the path of a retro-reflected laser beam (red) inside the vacuum system. The expanded image on the left shows the beam entering the vacuum chamber through a window and between pairs of traces on the atom chip, which are used to confine and cool the atoms to ultracold temperatures. Credit: NASA/JPL-Caltech The results of the first study, published in the November 2023 issue of Nature, described the demonstration of simultaneous atom interferometry with both rubidium and potassium quantum gases for the first time in space. The dual-species atom interferometer not only exhibited robust and repeatable operation of atom interferometry in Earth orbit, but it also served as a pathfinder for future experiments that aim to use quantum gases to test the universality of free fall, a key tenet of Einstein’s theory of general relativity.
      In the second study, the results of which were featured in the August 2024 issue of Nature Communications, members of the science team used the CAL atom interferometer to measure subtle vibrations of the space station and to remotely measure the frequency of the atom interferometer laser— the first time ultra-cold atoms have been used to detect changes in the surrounding environment in space. This paper also reported on the demonstration of the wave-like nature of matter persisting for the longest ever freefall time (over a tenth of a second) in space.
      “Reaching these milestones was incredibly challenging, and our success was not always a given,” said Jason Williams, the Cold Atom Lab project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It took dedication and a sense of adventure by the team to make this happen.”
      Space-based sensors that can measure gravity with high precision have a wide range of potential applications. They could reveal the composition of planets and moons in our solar system, because different materials have different densities that create subtle variations in gravity.
      The U.S.-German GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) mission is currently collecting gravity measurements using classical sensors that detect slight changes in gravity to track the movement of water and ice on Earth. A future mission using atom interferometry could provide better precision and stability, revealing even more detail about surface mass changes.
      Precise measurements of gravity could also offer insights into the nature of dark matter and dark energy, two major cosmological mysteries. Dark matter is an invisible substance that makes up about 27% of the universe, while the “regular” matter that composes planets, stars, and everything else we can see makes up only 5%. Dark energy makes up the remaining 68% of the universe and is the driver of the universe’s accelerating expansion.
      “Atom interferometry could also be used to test Einstein’s theory of general relativity in new ways,” said University of Virginia professor Cass Sackett, a Cold Atom Lab principal investigator. “This is the basic theory explaining the large-scale structure of our universe, and we know that there are aspects of the theory that we don’t understand correctly. This technology may help us fill in those gaps and give us a more complete picture of the reality we inhabit.”
      About the size of a minifridge, the Cold Atom Lab launched to the space station in 2018 with the goal of advancing quantum science by placing a long-term facility in the microgravity environment of low Earth orbit. The lab cools atoms to almost absolute zero, or minus 459 degrees Fahrenheit (minus 273 degrees Celsius). At this temperature, some atoms can form a Bose-Einstein condensate, a state of matter in which all atoms essentially share the same quantum identity. As a result, some of the atoms’ typically microscopic quantum properties become macroscopic, making them easier to study.
      Quantum properties can sometimes cause atoms to act like solid objects and sometimes like waves. Scientists don’t yet entirely understand how the building blocks of matter can transition between such different physical behaviors, but they’re using quantum technology like what’s available on the Cold Atom Lab to seek answers.
      In microgravity, Bose-Einstein condensates can reach colder temperatures and can exist for longer, giving scientists more opportunities to study them. The atom interferometer is among several tools in the CAL facility enabling precision measurements by harnessing the quantum nature of atoms.
      Dual-species atom interferometry in space. (Left) Normalized population for ultracold gases of potassium (blue) and rubidium (red) in one of two output states following a simultaneous dual-species atom interferometry sequence. (Right) Correlations observed in the relative population of potassium and rubidium output states. Credit: NASA/JPL-Caltech Due to its wave-like behavior, a single atom can simultaneously travel two physically separate paths. If gravity or other forces are acting on those waves, scientists can measure that influence by observing how the waves recombine and interact.
      “I expect that space-based atom interferometry will lead to exciting new discoveries, fantastic quantum technologies impacting everyday life, and will transport us into a quantum future,” said Nick Bigelow, a professor at University of Rochester in New York and Cold Atom Lab principal investigator for a consortium of U.S. and German scientists who co-authored the studies cited above.
      Designed and built at the NASA Jet Propulsion Laboratory, Cold Atom Lab is sponsored by the Biological and Physical Sciences (BPS) Division of NASA’s Science Mission Directorate at the Agency’s headquarters in Washington DC and the International Space Station Program at NASA’s Johnson Space Center in Houston, Texas. The work carried out at the Jet Propulsion Laboratory, California Institute of Technology, was executed under a contract with the National Aeronautics and Space Administration.
      Learn more about Cold Atom Lab at https://coldatomlab.jpl.nasa.gov/
      Just how cold are the atoms in Cold Atom Lab? Find out at https://www.jpl.nasa.gov/news/news.php?feature=7311
      To learn more about the Cold Atom Lab’s recent upgrades visit https://www.jpl.nasa.gov/news/upgrading-the-space-stations-cold-atom-lab-with-mixed-reality and https://www.jpl.nasa.gov/news/news.php?feature=7660
      Project Lead: Kamal Oudrhiri, Jet Propulsion Laboratory, California Institute of Technology
      Sponsoring Organization:  Biological and Physical Sciences Division (BPS)
      Share








      Details
      Last Updated May 06, 2025 Related Terms
      Technology Highlights Biological & Physical Sciences Cold Atom Laboratory (CAL) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) Science-enabling Technology View the full article
  • Check out these Videos

×
×
  • Create New...