Jump to content

Recommended Posts

  • Publishers
Posted
20 Min Read

The Marshall Star for July 24, 2024

An artist’s illustration depicting NASA’s Chandra X-ray Observatory in flight, with a vivid star field behind it. Chandra’s solar panels are deployed and its camera “eye” open on the cosmos.

25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity

By Rick Smith

“The art of aerospace engineering is a matter of seeing around corners,” said NASA thermal analyst Jodi Turk. In the case of NASA’s Chandra X-ray Observatory, marking its 25th anniversary in space this year, some of those corners proved to be as far as 80,000 miles away and a quarter-century in the future.

Turk is part of a dedicated team of engineers, designers, test technicians, and analysts at NASA’s Marshall Space Flight Center. Together with partners outside and across the agency, including the Chandra Operations Control Center in Burlington, Massachusetts, they keep the spacecraft flying, enabling Chandra’s ongoing studies of black holes, supernovae, dark matter, and more – and deepening our understanding of the origin and evolution of the cosmos.

Engineers in the X-ray Calibration Facility – now the world-class X-ray & Cryogenic Facility – at NASA’s Marshall Space Flight Center in Huntsville, Alabama, integrate the Chandra X-ray Observatory’s High Resolution Camera with the mirror assembly inside a 24-foot-diameter vacuum chamber, in this photo taken March 16, 1997. Chandra was launched July 23, 1999, aboard space shuttle Columbia. (NASA) Engineers in head-to-toe cleanroom suits conduct final integration of the Chandra X-ray Observatory’s sensitive camera equipment and high-powered mirror assembly, working inside a mammoth, tube-like vacuum chamber at NASA’s Marshall Space Flight Center.
Engineers in the X-ray Calibration Facility – now the world-class X-ray & Cryogenic Facility – at NASA’s Marshall Space Flight Center integrate the Chandra X-ray Observatory’s High Resolution Camera with the mirror assembly inside a 24-foot-diameter vacuum chamber, in this photo taken March 16, 1997. Chandra was launched July 23, 1999, aboard space shuttle Columbia.
NASA

“Everything Chandra has shown us over the last 25 years – the formation of galaxies and super star clusters, the behavior and evolution of supermassive black holes, proof of dark matter and gravitational wave events, the viability of habitable exoplanets – has been fascinating,” said retired NASA astrophysicist Martin Weisskopf, who led Chandra scientific development at Marshall beginning in the late 1970s. “Chandra has opened new windows in astrophysics that we’d hardly begun to imagine in the years prior to launch.”

Following extensive development and testing by a contract team managed and led by Marshall, Chandra was lifted to space aboard the space shuttle Columbia on July 23, 1999. Marshall has continued to manage the program for NASA ever since.

“How much technology from 1999 is still in use today?” said Chandra researcher Douglas Swartz. “We don’t use the same camera equipment, computers, or phones from that era. But one technological success – Chandra – is still going strong, and still so powerful that it can read a stop sign from 12 miles away.”

That lasting value is no accident. During early concept development, Chandra – known prior to launch as the Advanced X-ray Astrophysics Facility – was intended to be a 15-year, serviceable mission like that of NASA’s Hubble Space Telescope, enabling periodic upgrades by visiting astronauts.

sts093-705-020~large.jpg?w=1920&h=1920&f
The Chandra X-Ray Observatory, the longest cargo ever carried to space aboard the space shuttle, seen in Columbia’s payload bay prior to being tilted upward for release and deployment on July 23, 1999.
NASA

But in the early 1990s, as NASA laid plans to build the International Space Station in orbit, the new X-ray observatory’s budget was revised. A new, elliptical orbit would carry Chandra a third of the way to the Moon, or roughly 80,000 miles from Earth at apogee. That meant a shorter mission life – five years – and no periodic servicing.

The engineering design team at Marshall, its contractors, and the mission support team at the Smithsonian Astrophysical Observatory revised their plan, minimizing the impact to Chandra’s science. In doing so, they enabled a long-running science mission so successful that it would capture the imagination of the nation and lead NASA to extend its duration past that initial five-year period.

“There was a lot of excitement and a lot of challenges – but we met them and conquered them,” said Marshall project engineer David Hood, who joined the Chandra development effort in 1988.

“The field of high-powered X-ray astronomy was still so relatively young, it wasn’t just a matter of building a revolutionary observatory,” Weisskopf said. “First, we had to build the tools necessary to test, analyze, and refine the hardware.”

sts093-706-035~large.jpg?w=1911&h=1919&f
On July 23, 1999, the Chandra X-Ray Observatory is released from space shuttle Columbia’s payload bay. Twenty-five years later, Chandra continues to make valuable discoveries about high-energy sources and phenomena across the universe.
NASA

Marshall renovated and expanded its X-ray Calibration Facility – now known as the X-ray & Cryogenic Facility – to calibrate Chandra’s instruments and conduct space-like environment testing of sensitive hardware. That work would, years later, pave the way for Marshall testing of advanced mirror optics for NASA’s James Webb Space Telescope.

“Marshall has a proven history of designing for long-term excellence and extending our lifespan margins,” Turk said. “Our missions often tend to last well past their end date.”

Chandra is a case in point. The team has automated some of Chandra’s operations for efficiency. They also closely monitor key elements of the spacecraft, such as its thermal protection system, which have degraded as anticipated over time, due to the punishing effects of the space environment.

“Chandra’s still a workhorse, but one that needs gentler handling,” Turk said. The team met that challenge by meticulously modeling and tracking Chandra’s position and behavior in orbit and paying close attention to radiation, changes in momentum, and other obstacles. They have also employed creative approaches, making use of data from sensors on the spacecraft in new ways.

An artist’s illustration depicting NASA’s Chandra X-ray Observatory in flight, with a vivid star field behind it. Chandra’s solar panels are deployed and its camera “eye” open on the cosmos.
An artist’s illustration depicting NASA’s Chandra X-ray Observatory in flight, with a vivid star field behind it. Chandra’s solar panels are deployed and its camera “eye” open on the cosmos.
NASA

Acting project manager Andrew Schnell, who leads the Chandra team at Marshall, said the mission’s length means the spacecraft is now overseen by numerous “third-generation engineers” such as Turk. He said they’re just as dedicated and driven as their senior counterparts, who helped deliver Chandra to launch 25 years ago.

The work also provides a one-of-a-kind teaching opportunity, Turk said. “Troubleshooting Chandra has taught us how to find alternate solutions for everything from an interrupted sensor reading to aging thermocouples, helping us more accurately diagnose issues with other flight hardware and informing design and planning for future missions,” she said.

Well-informed, practically trained engineers and scientists are foundational to productive teams, Hood said – a fact so crucial to Chandra’s success that its project leads and support engineers documented the experience in a paper titled, “Lessons We Learned Designing and Building the Chandra Telescope.”

“Former program manager Fred Wojtalik said it best: ‘Teams win,’” Hood said. “The most important person on any team is the person doing their work to the best of their ability, with enthusiasm and pride. That’s why I’m confident Chandra’s still got some good years ahead of her. Because that foundation has never changed.”

As Chandra turns the corner on its silver anniversary, the team on the ground is ready for whatever fresh challenge comes next.

Learn more about the Chandra X-ray Observatory and its mission.

Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

NASA Sounding Rocket Launches, Studies Heating of Sun’s Active Regions

By Wayne Smith

Investigators at NASA’s Marshall Space Flight Center will use observations from a recently launched sounding rocket mission to provide a clearer image of how and why the Sun’s corona grows so much hotter than the visible surface of Earth’s parent star. The MaGIXS-2 mission – short for the second flight of the Marshall Grazing Incidence X-ray Spectrometer – launched from White Sands Missile Range in New Mexico on July 16.

The mission’s goal is to determine the heating mechanisms in active regions on the Sun by making critical observations using X-ray spectroscopy.

A sounding rocket launches into a bright blue sky leaving a plume of smoke behind.
NASA’s MaGIXS-2 sounding rocket mission successfully launches from White Sands Missile Range in New Mexico on July 16.
United States Navy

The Sun’s surface temperature is around 10,000 degrees Fahrenheit – but the corona routinely measures more than 1.8 million degrees, with active regions measuring up to 5 million degrees.

Amy Winebarger, Marshall heliophysicist and principal investigator for the MaGIXS missions, said studying the X-rays from the Sun sheds light on what’s happening in the solar atmosphere – which, in turn, directly impacts Earth and the entire solar system.

X-ray spectroscopy provides unique capabilities for answering fundamental questions in solar physics and for potentially predicting the onset of energetic eruptions on the Sun like solar flares or coronal mass ejections. These violent outbursts can interfere with communications satellites and electronic systems, even causing physical drag on satellites as Earth’s atmosphere expands to absorb the added solar energy.

“Learning more about these solar events and being able to predict them are the kind of things we need to do to better live in this solar system with our Sun,” Winebarger said.

The NASA team retrieved the payload immediately after the flight and has begun processing datasets.

“We have these active regions on the Sun, and these areas are very hot, much hotter than even the rest of the corona,” said Patrick Champey, deputy principal investigator at Marshall for the mission. “There’s been a big question – how are these regions heated? We previously determined it could relate to how often energy is released. The X-rays are particularly sensitive to this frequency number, and so we built an instrument to look at the X-ray spectra and disentangle the data.”

A group of around 30 individuals stand in front of a sounding rocket on a launch pad at a facility in White Sands, New Mexico.
The MaGIXS-2 sounding rocket team stand on the launchpad in White Sands, New Mexico, prior to launch July 16.
United States Navy

Following a successful July 2021 launch of the first MaGIXS mission, Marshall and its partners refined instrumentation for MaGIXS-2 to provide a broader view for observing the Sun’s X-rays. Marshall engineers developed and fabricated the telescope and spectrometer mirrors, and the camera. The integrated instrument was exhaustively tested in Marshall’s state-of-the-art X-ray & Cryogenic Facility. For MaGIXS-2, the team refined the same mirrors used on the first flight, with a much larger aperture and completed the testing at Marshall’s Stray Light Test Facility.

A Marshall project from inception, technology developments for MaGIXS include the low-noise CCD camera, high-resolution X-ray optics, calibration methods, and more.

Winebarger and Champey said MaGIXS many of the team members started their NASA careers with the project, learning to take on lead roles and benefitting from mentorship.

“I think that’s probably the most critical thing, aside from the technology, for being successful,” Winebarger said. “It’s very rare that you get from concept to flight in a few years. A young engineer can go all the way to flight, come to White Sands to watch it launch, and retrieve it.”

NASA routinely uses sounding rockets for brief, focused science missions. They’re often smaller, more affordable, and faster to design and build than large-scale satellite missions, Winebarger said. Sounding rockets carry scientific instruments into space along a parabolic trajectory. Their overall time in space is brief, typically five minutes, and at lower vehicle speeds for a well-placed scientific experiment.

The MaGIXS mission was developed at Marshall in partnership with the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts. The Sounding Rockets Program Office, located at NASA Goddard Space Flight Center’s Wallops Flight Facility, provides suborbital launch vehicles, payload development, and field operations support to NASA and other government agencies. 

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

From 1 Crew to Another: Artemis II Astronauts Meet NASA Barge Crew

Members of the Artemis II crew met with the crew of NASA’s Pegasus barge prior to their departure to deliver the core stage of NASA’s SLS (Space Launch System) rocket to the Space Coast.

NASA astronaut and pilot of the Artemis II mission Victor Glover met the crew July 15. NASA astronaut Reid Wiseman, commander, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, mission specialist, visited the barge July 16 shortly before the flight hardware was loaded onto it.

From left to right: Ashley Marlar, Jamie Crews, Nick Owen, Jeffery Whitehead, Scott Ledet, Jason Dickerson, John Campbell, NASA astronaut Victor Glover, Farid Sayah, Kelton Hutchinson, Terry Fitzgerald, Bryan Jones, and Joe Robinson.
Crew members of NASA’s Pegasus barge meet with NASA astronaut Victor Glover at NASA’s Michoud Assembly Facility prior to their departure to deliver the core stage of NASA’s SLS (Space Launch System) rocket to the Space Coast. From left are Ashley Marlar, Jamie Crews, Nick Owen, Jefferey Whitehead, Scott Ledet, Jason Dickerson, John Campbell, Glover, Farid Sayah, Kelton Hutchinson, Terry Fitzgerald, Bryan Jones, and Joe Robinson.
NASA/Brandon Hancock

Pegasus is currently transporting the SLS core stage from NASA’s Michoud Assembly Facility to NASA’s Kennedy Space Center, where it will be integrated and prepared for launch. During the Artemis II test flight, the core stage with its four RS-25 engines will provide more than 2 million pounds of thrust to help send the Artemis II crew around the Moon.

The Pegasus crew and team, from left, includes Kelton Hutchinson, Jeffery Whitehead, Jason Dickerson, Arlan Cochran, John Brunson, NASA astronaut Reid Wiseman of the Artemis II crew, Marc Verhage, Terry Fitzgerald, Scott Ledet, CSA astronaut Jeremy Hansen of the Artemis II crew, Wil Daly, Ashley Marlar, Farid Sayah, Jamie Crews, Joe Robinson, and Nick Owen.
The Pegasus crew and team, from left, includes Kelton Hutchinson, Jeffery Whitehead, Jason Dickerson, Arlan Cochran, John Brunson, NASA astronaut Reid Wiseman, Marc Verhage, Terry Fitzgerald, Scott Ledet, CSA astronaut Jeremy Hansen, Wil Daly, Ashley Marlar, Farid Sayah, Jamie Crews, Joe Robinson, and Nick Owen.
NASA/Sam Lott

Pegasus, which was previously used to ferry space shuttle tanks, was modified and refurbished to ferry the SLS rocket’s massive core stage. At 212 feet in length and 27.6 feet in diameter, the Moon rocket stage is more than 50 feet longer than the space shuttle external tank.

› Back to Top

I am Artemis: John Campbell

How do you move NASA’s SLS (Space Launch System) rocket’s massive 212-foot-long core stage across the country? You do it with a 300-foot-long barge. However, NASA’s Pegasus barge isn’t just any barge. It’s a vessel with a history, and John Campbell, a logistics engineer for the agency based at NASA’s Marshall Space Flight Center, is one of the few people who get to be a part of its legacy.

John Campbell, a logistics engineer at NASA’s Marshall Space Flight Center, stands on NASA's Pegasus barge July 15 for the Artemis II core stage rollout.
John Campbell, a logistics engineer at NASA’s Marshall Space Flight Center, stands on NASA’s Pegasus barge July 15.
NASA

For Campbell, this journey is more than just a job – it’s a lifelong passion realized. “Ever since I was a boy, I’ve been fascinated by engineering,” he said. “But to be entrusted with managing NASA’s Pegasus barge, transporting history-making hardware for human spaceflight across state lines and waterways – is something I never imagined.”

NASA has used barges to ferry the large and heavy hardware elements of its rockets since the Apollo Program. Replacing the agency’s Poseidon and Orion barges, Pegasus was originally crafted for the Space Shuttle Program and updated in recent years to help usher in the Artemis Generation and accommodate the mammoth dimensions of the SLS core stage. The barge plays a big role in NASA’s logistical operations, navigating rivers and coastal waters across the Southeast, and has transported key structural test hardware for SLS in recent years.

Campbell grew up in Muscle Shoals, Alabama. After graduating from the University of Alabama with a degree in mechanical engineering, he ventured south to Panama City, Florida, where he spent a few years with a heating, ventilation, and air conditioning consulting team. Looking for an opportunity to move home, he applied for and landed a contractor position with NASA and soon moved to his current civil service role.

With 17 years under his belt, Campbell has many fond memories during his time with the agency. One standout moment was witnessing the space shuttle stacked in the Vehicle Assembly Building at NASA’s Kennedy Space Center. But it’s not all about rockets and launch pads for Campbell. When he isn’t in his office making sure Pegasus has everything it needs for its next trip out, he is on the water accompanying important pieces of hardware to their next destinations. With eight trips on Pegasus under his belt, the journey never gets old.

“There is something peaceful when you look out and it’s just you, the water, one or two other boats, and wildlife,” Campbell said. “On one trip we had a pod of at least 20 dolphins surrounding us. You get to see all kinds of cool wildlife and scenery.”

From cherishing special moments like this to ensuring the success of each journey, Campbell recognizes the vital role he plays in the agency’s goals to travel back to the Moon and beyond and does not take his responsibility lightly.

“To be a part of the Artemis campaign and the future of space is just cool. I was there when the barge underwent its transformation to accommodate the colossal core stage, and in that moment, I realized I was witnessing history unfold. Though I couldn’t be present at the launch of Artemis I, watching it on TV was an emotional experience. To see something you’ve been a part of, something you’ve watched evolve from mere components to a giant spacecraft hurtling into space – it’s a feeling beyond words.”

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

Marshall manages the SLS Program.

Read other I am Artemis features.

› Back to Top

Icelandic Graduate Student Brings High-Performance Computing Knowledge to IMPACT

By Derek Koehl

For the last six months, NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT) foundation model development team at NASA’s Marshall Space Flight Center, has been joined by Þorsteinn Elí Gíslason, a visiting graduate student at the University of Alabama in Huntsville from the University of Iceland.

His participation on the Prithvi geospatial foundation model, an open-source geospatial artificial intelligence (AI) foundation model for Earth observation data, was part of a collaboration partnership between NASA, the University of Alabama in Huntsville (UAH), the University of Iceland, and the Jülich Supercomputing Centre in Forschungszentrum Jülich, Germany. 

Þorsteinn Elí Gíslason, a graduate student from the University of Iceland, is supported by NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA’s Marshall Space Flight Center.
Þorsteinn Elí Gíslason, a graduate student from the University of Iceland, is supported by NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT) at NASA’s Marshall Space Flight Center.
NASA

The goal of the collaboration was to share expertise and knowledge across institutions in an open and synergetic way. This partnership serves as a pathfinder for students to work on an international collaborative project and provides extensive research opportunities to graduate students like Elí in fields such as AI foundation models and high-performance computing (HPC). 

“Elí demonstrated exceptional support in running experiments on the geospatial foundation model, showcasing his expertise and dedication,” said Sujit Roy, Gíslason’s mentor and IMPACT FM team lead from UAH. “I loved one specific quality of Elí, that he asks a lot of questions and puts effort into understanding the problem statement.”

Gíslason was instrumental in helping the team overcome the hoops and hurdles involved when pre-training a foundation model on a high-performance computing system. His ability to understand models and scale them to multiple graphics processing units (GPUs) was an instrumental skill for the project. He facilitated scripts and simulations to run seamlessly over multiple nodes and GPUs, optimizing resources and accelerating research outcomes. Additionally, Elí’s adeptness in running these models on high-performance computing systems significantly enhanced the team’s computational efficiency. Gíslason also contributed his knowledge of the Jülich Supercomputing Centre’s HPC systems and served an important role with respect to the Centre’s operations. 

By helping the team overcome the challenges of pre-training, Gíslason’s interest in AI models expanded.

“For as long as I can remember, I’ve been interested in programming and computers. I’ve always found it fun to apply programming to a problem I’m facing, especially if it has the opportunity to reduce the overall work required,” said Gíslason. “AI, machine learning, and deep learning are just advanced forms of this interest. These models capture my interest in that they are able to solve problems by capturing patterns that don’t have to be explicitly defined beforehand.”

Gíslason’s work with IMPACT supports his master’s thesis in computational engineering at the University of Iceland. His graduate work builds on his Bachelor of Science in physics. 

This collaboration was facilitated by Gabriele Cavallaro from Jülich Supercomputing Center and Manil Maskey, IMPACT deputy project manager and research scientist at Marshall. 

“Open science thrives on sharing expertise, and artificial intelligence encompasses a vast field requiring knowledge across many areas,” Maskey said. “Elí provided one of the key expertise areas crucial to our project. This collaboration was mutually beneficial- our foundation model project gained from his specialized knowledge, while Elí gained valuable technical skills and experience as part of a major NASA project.”

IMPACT is managed by Marshall and is part of the center’s Earth Science branch. The collaboration was conducted through the IEEE Geoscience and Remote Sensing Society Earth Science Informatics Technical Committee. Along with IMPACT and Marshall, development of the Prithvi geospatial foundation model featured significant contributions from NASA’s Office of the Chief Science Data Officer, IBM Research, Oak Ridge National Laboratory, and the University of Alabama in Huntsville.

Koehl is a research associate at the University of Alabama in Huntsville supporting IMPACT.

› Back to Top

Delta Aquariid Meteor Shower Best Seen in Southern Hemisphere in Late July

Most casual skywatchers know the bright, busy Perseids meteor shower arrives in late July and peaks in mid-August. Fewer are likely to name-drop the Southern delta Aquariids, which overlap with the Perseids each summer and are typically outshone by their brighter counterparts, especially when the Moon washes out the Southern delta Aquariids.

Perseids meteors – which coincide with the Southern Delta Aquariids at the tail end of July – streak over Sequoia National Forest in this 2023 NASA file photo.
Perseids meteors – which coincide with the Southern Delta Aquariids at the tail end of July – streak over Sequoia National Forest in this 2023 NASA file photo.
NASA/Preston Dyches)

This year, with the Southern delta Aquariids set to peak on the night of July 28, the underdog shower isn’t likely to deliver any surprises. Unless you’re below the equator, it’ll take a keen eye to spot one.

“The Southern delta Aquariids have a very strong presence on meteor radars which can last for weeks,” said NASA astronomer Bill Cooke, who leads the Meteoroid Environment Office at NASA’s Marshall Space Flight Center. “Sadly, for most observers in the Northern Hemisphere, they’re difficult to spot with the naked eye, requiring the darkest possible skies.”

Meteor watchers – particularly those in the southern United States and points south – will be best served to check out the night sky July 28-29 before moonrise at 2 a.m.

During peak shower activity, under ideal viewing conditions with no Moon in the sky, casual watchers may see 2-5 meteors per hour, flashing into view at speeds of 25 miles per second. A small percentage of these may leave glowing, ionized gas trails that linger visibly for a second or two after the meteor has passed. But most of the noticeable activity for the Southern delta Aquariids occurs over a couple of days around its peak, so don’t expect to see any past the end of July.

You can distinguish Southern delta Aquariids meteors from the Perseids by identifying their radiant, or the point in the sky from which a meteor appears to originate. Southern delta Aquariids appear to come from the direction of the constellation of Aquarius, hence the name. The Perseids’ radiant is in the constellation of Perseus in the northern sky.

Most astronomers agree the Southern delta Aquariids originate from Comet 96P/Machholz, which orbits the Sun every 5.3 years. Discovered by Donald Machholz in 1986, the comet’s nucleus is roughly 4 miles across – about half the size of the object suspected to have wiped out the dinosaurs. Researchers think debris causing the Southern delta Aquariid meteor shower was generated about 20,000 years ago.

› Back to Top

Juno Mission Captures Colorful, Chaotic Clouds of Jupiter

During its 61st close flyby of Jupiter on May 12, NASA’s Juno spacecraft captured a color-enhanced view of the giant planet’s northern hemisphere. It provides a detailed view of chaotic clouds and cyclonic storms in an area known to scientists as a folded filamentary region. In these regions, the zonal jets that create the familiar banded patterns in Jupiter’s clouds break down, leading to turbulent patterns and cloud structures that rapidly evolve over the course of only a few days.

Jupiter
During its 61st close flyby of Jupiter on May 12, NASA’s Juno spacecraft captured a color-enhanced view of the giant planet’s northern hemisphere.
Image data: NASA/JPL-Caltech/SwRI/MSSS. Image processing by Gary Eason © CC BY

Citizen scientist Gary Eason made this image using raw data from the JunoCam instrument, applying digital processing techniques to enhance color and clarity.

At the time the raw image was taken, the Juno spacecraft was about 18,000 miles above Jupiter’s cloud tops, at a latitude of about 68 degrees north of the equator.

JunoCam’s raw images are available for the public to peruse and process into image products at https://missionjuno.swri.edu/junocam/processing. More information about NASA citizen science can be found at https://science.nasa.gov/citizenscience.

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft.

Learn more about Juno.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
      NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
      Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
      “Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
      All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
      Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
      Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
      Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
      The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
      Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
      “HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
      Frozen Water — Almost Everywhere
      Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
      The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
      This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
      The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
      Learn more about spectroscopy
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s coverage of the April 8, 2024, total solar eclipse has earned two nominations for the 46th Annual News & Documentary Emmy Awards.
      The Academy of Television Arts & Sciences announced the nominations on May 1, recognizing NASA’s outstanding work in sharing this rare celestial event with audiences around the world. The winners are set to be unveiled at a ceremony in late June.
      “Total solar eclipses demonstrate the special connection between our Earth, Moon, and Sun by impacting our senses during the breathtaking moments of total alignment that only occur at this time on Earth,” said Nicky Fox, associate administrator for science at NASA Headquarters in Washington. “NASA’s Eclipse coverage team perfectly encapsulated the awe-inspiring experience from start to finish for viewers around the world in this once-in-a-lifetime moment in American history. Congratulations to the entire NASA Eclipse coverage team for their two much-deserved Emmy award nominations!”
      The two nominations include:
      Outstanding Live News Special for the agency’s live broadcast coverage of the 2024 total solar eclipse. NASA’s live broadcast coverage of the 2024 total solar eclipse was the most ambitious live project ever attempted by the agency. The broadcast spanned three hours as the eclipse traveled 3,000 miles across seven states and two countries. From cities, parks, and stadiums, 11 hosts and correspondents provided on air commentary, interviews, and live coverage. Viewers tuned in from all over the world, including at watch parties in 9 locations, from the Austin Public Library to New York’s Times Square. An interactive “Eclipse Board” provided real time data analysis as the Moon’s shadow crossed North America. Live feeds from astronauts aboard the International Space Station and NASA’s WB-57 high-altitude research aircraft were brought in to provide rare and unique perspectives of the solar event.
      In total, NASA received almost 40 million views across its own distribution. Externally, the main broadcast was picked up in 2,208 hits on 568 channels in 25 countries.
      Outstanding Show Open or Title Sequence – News for the agency’s show open for the 2024 total solar eclipse. NASA’s show open for the 2024 total solar eclipse live broadcast explores the powerful connections between the Sun, humanity, and the rare moment when day turns to night. From witnessing the Sun’s atmosphere to feeling the dramatic drop in temperature, the video captures the psychological, emotional, and cultural impact of this celestial phenomenon.  
      For more information about NASA missions, visit:
      https://www.nasa.gov
      Share
      Details
      Last Updated May 08, 2025 Related Terms
      General 2024 Solar Eclipse Eclipses Heliophysics Heliophysics Division Science Mission Directorate Solar Eclipses The Solar System Explore More
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
      Article 3 hours ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 1 day ago 5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Power & Heat Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM FAQ 3 min read
      NASA Selects Winners of the 2024-2025 Power to Explore Challenge
      Ten-year-old, Terry Xu of Arcadia, California; 14-year-old, Maggie Hou of Snohomish, Washington; and 17-year-old, Kairat Otorov of Trumbull, Connecticut, winners of the 2024-2025 Power to Explore Student Writing Challenge. NASA/David Lam, Binbin Zheng, The Herald/Olivia Vanni, Meerim Otorova NASA has chosen three winners out of nine finalists in the fourth annual Power to Explore Challenge, a national writing competition designed to teach K-12 students about the enabling power of radioisotopes for space exploration.
      “Congratulations to the amazing champions and all of the participants!
      Carl Sandifer II
      Program Manager, NASA’s Radioisotope Power Systems Program
      The essay competition asked students to learn about NASA’s radioisotope power systems (RPS), likened to “nuclear batteries,” which the agency has used discover “moonquakes” on Earth’s Moon and study some of the most extreme of the more than 891 moons in the solar system. In 275 words or less, students dreamed up a unique exploration mission of one of these moons and described their own power to achieve their mission goals.
      “I’m so impressed by the creativity and knowledge of our Power to Explore winners,” said Carl Sandifer II, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland.
      Entries were split into three groups based on grade level, and a winner was chosen from each. The three winners, each accompanied by a guardian, are invited to NASA’s Glenn Research Center in Cleveland for a VIP tour of its world-class research facilities this summer.
      The winners are:
      Terry Xu, Arcadia, California, kindergarten through fourth grade Maggie Hou, Snohomish, Washington, fifth through eighth grade Kairat Otorov, Trumbull, Connecticut, ninth through 12th grade “Congratulations to the amazing champions and all of the participants! Your “super powers” inspire me and make me even more optimistic about the future of America’s leadership in space,” Sandifer said.
      The Power to Explore Challenge offered students the opportunity to learn about space power, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest received nearly 2,051 submitted entries from all 50 states, U.S. territories, and the Department of Defense Education Activity overseas.
      Every student who submitted an entry received a digital certificate and an invitation to the Power Up virtual event held on March 21. There, NASA announced the 45 national semifinalists, and students learned about what powers the NASA workforce.
      Additionally, the national semifinalists received a NASA RPS prize pack.
      NASA announced three finalists in each age group (nine total) on April 23. Finalists were invited to discuss their mission concepts with a NASA scientist or engineer during an exclusive virtual event.
      The challenge is funded by the Radioisotope Power Systems Program Office in NASA’s Science Mission Directorate and administered by Future Engineers under a Small Business Innovation Research phase III contract. This task is managed by the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      For more information on radioisotope power systems visit: https://nasa.gov/rps
      Karen Fox / Erin Morton
      Headquarters, Washington
      301-286-6284 / 202-805-9393
      karen.c.fox@nasa.gov / erin.morton@nasa.gov
      Kristin Jansen
      Glenn Research Center, Cleveland
      216-296-2203
      kristin.m.jansen@nasa.gov
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      https://youtu.be/63uNNcCpxHI How are we made of star stuff?

      Well, the important thing to understand about this question is that it’s not an analogy, it’s literally true.

      The elements in our bodies, the elements that make up our bones, the trees we see outside, the other planets in the solar system, other stars in the galaxy. These were all part of stars that existed well before our Sun and Earth and solar system were even formed.

      The universe existed for billions of years before we did. And all of these elements that you see on the periodic table, you see carbon and oxygen and silicon and iron, the common elements throughout the universe, were all put there by previous generations of stars that either blew off winds like the Sun blows off a solar wind, or exploded in supernova explosions and thrust their elements throughout the universe.

      These are the same things that we can trace with modern telescopes, like the Hubble Telescope and the James Webb Space Telescope, the Chandra X-ray Observatory. These are all elements that we can map out in the universe with these observatories and trace back to the same things that form us and the elemental abundances that we see in stars now are the same things that we see in the Earth’s crust, we see in asteroids. And so we know that these are the same elements that were once part of these stars.

      So the question of, “How are we made of star stuff?”, in the words of Carl Sagan, “The cosmos is within us. We are made of star stuff. We are a way for the universe to know itself.”

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Apr 28, 2025 Related Terms
      General Astrophysics Astrophysics Division Chandra X-Ray Observatory Hubble Space Telescope James Webb Space Telescope (JWST) Origin & Evolution of the Universe Science Mission Directorate The Solar System The Universe Explore More
      3 min read NASA Moon Observing Instrument to Get Another Shot at Lunar Ops
      Article 16 mins ago 5 min read NASA 3D Wind Measuring Laser Aims to Improve Forecasts from Air, Space
      Article 1 hour ago 1 min read Earth Science Showcase – Kids Art Collection
      Article 3 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      NASA’s Artemis campaign will use human landing systems, provided by SpaceX and Blue Origin, to safely transport crew to and from the surface of the Moon, in preparation for future crewed missions to Mars. As the landers touch down and lift off from the Moon, rocket exhaust plumes will affect the top layer of lunar “soil,” called regolith, on the Moon. When the lander’s engines ignite to decelerate prior to touchdown, they could create craters and instability in the area under the lander and send regolith particles flying at high speeds in various directions.
      To better understand the physics behind the interaction of exhaust from the commercial human landing systems and the Moon’s surface, engineers and scientists at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently test-fired a 14-inch hybrid rocket motor more than 30 times. The 3D-printed hybrid rocket motor, developed at Utah State University in Logan, Utah, ignites both solid fuel and a stream of gaseous oxygen to create a powerful stream of rocket exhaust.
      “Artemis builds on what we learned from the Apollo missions to the Moon. NASA still has more to learn more about how the regolith and surface will be affected when a spacecraft much larger than the Apollo lunar excursion module lands, whether it’s on the Moon for Artemis or Mars for future missions,” said Manish Mehta, Human Landing System Plume & Aero Environments discipline lead engineer. “Firing a hybrid rocket motor into a simulated lunar regolith field in a vacuum chamber hasn’t been achieved in decades. NASA will be able to take the data from the test and scale it up to correspond to flight conditions to help us better understand the physics, and anchor our data models, and ultimately make landing on the Moon safer for Artemis astronauts.”
      Fast Facts
      Over billions of years, asteroid and micrometeoroid impacts have ground up the surface of the Moon into fragments ranging from huge boulders to powder, called regolith. Regolith can be made of different minerals based on its location on the Moon. The varying mineral compositions mean regolith in certain locations could be denser and better able to support structures like landers. Of the 30 test fires performed in NASA Marshall’s Component Development Area, 28 were conducted under vacuum conditions and two were conducted under ambient pressure. The testing at Marshall ensures the motor will reliably ignite during plume-surface interaction testing in the 60-ft. vacuum sphere at NASA’s Langley Research Center in Hampton, Virginia, later this year.
      Once the testing at NASA Marshall is complete, the motor will be shipped to NASA Langley. Test teams at NASA Langley will fire the hybrid motor again but this time into simulated lunar regolith, called Black Point-1, in the 60-foot vacuum sphere. Firing the motor from various heights, engineers will measure the size and shape of craters the rocket exhaust creates as well as the speed and direction the simulated lunar regolith particles travel when the rocket motor exhaust hits them.
      “We’re bringing back the capability to characterize the effects of rocket engines interacting with the lunar surface through ground testing in a large vacuum chamber — last done in this facility for the Apollo and Viking programs. The landers going to the Moon through Artemis are much larger and more powerful, so we need new data to understand the complex physics of landing and ascent,” said Ashley Korzun, principal investigator for the plume-surface interaction tests at NASA Langley. “We’ll use the hybrid motor in the second phase of testing to capture data with conditions closely simulating those from a real rocket engine. Our research will reduce risk to the crew, lander, payloads, and surface assets.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Credit: NASA Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
      For more information about Artemis, visit:
      https://www.nasa.gov/artemis
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      View the full article
  • Check out these Videos

×
×
  • Create New...