Members Can Post Anonymously On This Site
25 Images to Celebrate NASA’s Chandra 25th Anniversary
-
Similar Topics
-
By European Space Agency
Week in images: 23-27 June 2025
Discover our week through the lens
View the full article
-
By NASA
6 Min Read NASA’s Chandra Shares a New View of Our Galactic Neighbor
The Andromeda galaxy, also known as Messier 31 (M31), is the closest spiral galaxy to the Milky Way at a distance of about 2.5 million light-years. Astronomers use Andromeda to understand the structure and evolution of our own spiral, which is much harder to do since Earth is embedded inside the Milky Way.
The galaxy M31 has played an important role in many aspects of astrophysics, but particularly in the discovery of dark matter. In the 1960s, astronomer Vera Rubin and her colleagues studied M31 and determined that there was some unseen matter in the galaxy that was affecting how the galaxy and its spiral arms rotated. This unknown material was named “dark matter.” Its nature remains one of the biggest open questions in astrophysics today, one which NASA’s upcoming Nancy Grace Roman Space Telescope is designed to help answer.
X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major This new composite image contains data of M31 taken by some of the world’s most powerful telescopes in different kinds of light. This image includes X-rays from NASA’s Chandra X-ray Observatory and ESA’s (European Space Agency’s) XMM-Newton (represented in red, green, and blue); ultraviolet data from NASA’s retired GALEX (blue); optical data from astrophotographers using ground based telescopes (Jakob Sahner and Tarun Kottary); infrared data from NASA’s retired Spitzer Space Telescope, the Infrared Astronomy Satellite, COBE, Planck, and Herschel (red, orange, and purple); and radio data from the Westerbork Synthesis Radio Telescope (red-orange).
The Andromeda Galaxy (M31) in Different Types of Light.X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major Each type of light reveals new information about this close galactic relative to the Milky Way. For example, Chandra’s X-rays reveal the high-energy radiation around the supermassive black hole at the center of M31 as well as many other smaller compact and dense objects strewn across the galaxy. A recent paper about Chandra observations of M31 discusses the amount of X-rays produced by the supermassive black hole in the center of the galaxy over the last 15 years. One flare was observed in 2013, which appears to represent an amplification of the typical X-rays seen from the black hole.
These multi-wavelength datasets are also being released as a sonification, which includes the same wavelengths of data in the new composite. In the sonification, the layer from each telescope has been separated out and rotated so that they stack on top of each other horizontally, beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes, from lower-energy radio waves up through the high energy of X-rays. Meanwhile, the brightness of each source controls volume, and the vertical location dictates the pitch.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
In this sonification of M31, the layers from each telescope has been separated out and rotated so that they stack on top of each other horizontally beginning with X-rays at the top and then moving through ultraviolet, optical, infrared, and radio at the bottom. As the scan moves from left to right in the sonification, each type of light is mapped to a different range of notes ranging from lower-energy radio waves up through the high-energy of X-rays. Meanwhile, the brightness of each source controls volume and the vertical location dictates the pitch.NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida This new image of M31 is released in tribute to the groundbreaking legacy of Dr. Vera Rubin, whose observations transformed our understanding of the universe. Rubin’s meticulous measurements of Andromeda’s rotation curve provided some of the earliest and most convincing evidence that galaxies are embedded in massive halos of invisible material — what we now call dark matter. Her work challenged long-held assumptions and catalyzed a new era of research into the composition and dynamics of the cosmos. In recognition of her profound scientific contributions, the United States Mint has recently released a quarter in 2025 featuring Rubin as part of its American Women Quarters Program — making her the first astronomer honored in the series.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features several images and a sonification video examining the Andromeda galaxy, our closest spiral galaxy neighbor. This collection helps astronomers understand the evolution of the Milky Way, our own spiral galaxy, and provides a fascinating insight into astronomical data gathering and presentation.
Like all spiral galaxies viewed at this distance and angle, Andromeda appears relatively flat. Its spiraling arms circle around a bright core, creating a disk shape, like a large dinner plate. In most of the images in this collection, Andromeda’s flat surface is tilted to face our upper left.
This collection features data from some of the world’s most powerful telescopes, each capturing light in a different spectrum. In each single-spectrum image, Andromeda has a similar shape and orientation, but the colors and details are dramatically different.
In radio waves, the spiraling arms appear red and orange, like a burning, loosely coiled rope. The center appears black, with no core discernible. In infrared light, the outer arms are similarly fiery. Here, a white spiraling ring encircles a blue center with a small golden core. The optical image is hazy and grey, with spiraling arms like faded smoke rings. Here, the blackness of space is dotted with specks of light, and a small bright dot glows at the core of the galaxy. In ultraviolet light the spiraling arms are icy blue and white, with a hazy white ball at the core. No spiral arms are present in the X-ray image, making the bright golden core and nearby stars clear and easy to study.
In this release, the single-spectrum images are presented side by side for easy comparison. They are also combined into a composite image. In the composite, Andromeda’s spiraling arms are the color of red wine near the outer edges, and lavender near the center. The core is large and bright, surrounded by a cluster of bright blue and green specks. Other small flecks in a variety of colors dot the galaxy, and the blackness of space surrounding it.
This release also features a thirty second video, which sonifies the collected data. In the video, the single-spectrum images are stacked vertically, one atop the other. As the video plays, an activation line sweeps across the stacked images from left to right. Musical notes ring out when the line encounters light. The lower the wavelength energy, the lower the pitches of the notes. The brighter the source, the louder the volume.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
Share
Details
Last Updated Jun 25, 2025 EditorLee MohonContactLane Figueroa Related Terms
Andromeda Galaxy Chandra X-Ray Observatory Galaxies Marshall Astrophysics Marshall Space Flight Center The Universe Explore More
6 min read NICER Status Updates
Article 1 day ago 2 min read Hubble Studies Small but Mighty Galaxy
This portrait from the NASA/ESA Hubble Space Telescope puts the nearby galaxy NGC 4449 in…
Article 5 days ago 3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field
For 540 million years, the ebb and flow in the strength of Earth’s magnetic field…
Article 1 week ago View the full article
-
By NASA
Explore This Section Science Artemis Mission Accomplished! Artemis… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 5 min read
Mission Accomplished! Artemis ROADS III National Challenge Competitors Celebrate their Achievements
The NASA Science Activation program’s Northwest Earth and Space Sciences Pathways (NESSP) team has successfully concluded the 2024–2025 Artemis ROADS III National Challenge, an educational competition that brought real NASA mission objectives to student teams (and reached more than 1,500 learners) across the country. From December 2024 through May 2025, over 300 teams of upper elementary, middle, and high school students from 22 states participated, applying STEM (Science, Technology, Engineering, and Mathematics) skills in exciting and creative ways.
Participants tackled eight Mission Objectives inspired by NASA’s Artemis missions, which aim to return humans to the Moon. Students explored challenges such as:
Designing a water purification system for the Moon inspired by local water cycles Developing a Moon-based agricultural plan based on experimental results Programming a rover to autonomously navigate lunar tunnels Engineering and refining a human-rated water bottle rocket capable of safely returning a “chip-stronaut” to Earth Envisioning their future careers through creative projects like graphic novels or video interviews Exploring NASA’s Artemis program through a new Artemis-themed Lotería game In-person hub events were hosted by Northern Arizona University, Central Washington University, and Montana State University, where teams from Washington, Montana, and Idaho gathered to present their work, collaborate with peers, and experience life on a college campus. Students also had the chance to connect virtually with NASA scientists and engineers through NESSP’s NASA Expert Talks series.
“Artemis ROADS III is NESSP’s eighth ROADS challenge, and I have to say, I think it’s the best one yet. It’s always inspiring to see so many students across the country engage in a truly meaningful STEM experience. I heard from several students and educators that participating in the challenge completely changed their perspective on science and engineering. I believe that’s because this program is designed to let students experience the joy of discovery and invention—driven by both teamwork and personal creativity—that real scientists and engineers love about their work. We also show students the broad range of STEM expertise NASA relies on to plan and carry out a mission like Artemis. Most importantly, it gives them a chance to feel like they are part of the NASA mission, which can be truly transformative.”
– Dr. Darci Snowden, Director, NESSP
NESSP proudly recognizes the following teams for completing all eight Mission Objectives and the Final Challenge:
Space Pringles, 3rd-5th Grade, San Antonio, TX Space Axolotls, 3rd-5th Grade, Roberts, MT TEAM Wild, 6th-8th Grade, Eagle Mountain, UT Pessimistic Penguins, 6th-8th Grade, Eagle Mountain, UT Dwarf Planets, 6th-8th Grade, Eagle Mountain, UT Astronomical Rovers, 6th-8th Grade, Eagle Mountain, UT Cosmic Honeybuns, 6th-8th Grade, Eagle Mountain, UT Houston we have a Problem, 6th-8th Grade, Eagle Mountain, UT FBI Wanted List, 6th-8th Grade, Eagle Mountain, UT Lunar Legion, 6th-8th Grade, San Antonio, TX Artemis Tax-Free Space Stallions, 6th-8th Grade, Egg Harbor, NJ Aquila, 6th-8th Grade, Gooding, ID Space Warriors, 6th-8th Grade, Wapato, WA Team Cygnus, 6th-8th Grade, Red Lodge, MT Maple RocketMen, 6th-8th Grade, Northbrook, IL RGB Hawks, 6th-8th Grade, Sagle, ID The Blue Moon Bigfoots, 6th-8th Grade, Medford, OR W.E.P.Y.C.K., 6th-8th Grade, Roberts, MT Lunar Dawgz, 6th-8th Grade, Safford, AZ ROSEBUD ROCKETEERS, 6th-8th Grade, Rosebud, MT The Cosmic Titans, 6th-8th Grade, Thomson Falls, MT The Chunky Space Monkeys, 6th-8th Grade, Naches, WA ROSEBUD RED ANGUS, 9th-12th Grade, Rosebud, MT Bulky Bisons, 9th-12th Grade, Council Grove, KS The Falling Stars, 9th-12th Grade, Thomson Falls, MT The Roadkillers, 9th-12th Grade, Thomson Falls, MT The Goshawks, 9th-12th Grade, Thomson Falls, MT Sequim Cosmic Catalysts, 9th-12th Grade, Sequim, WA Spuddie Buddies, 9th-12th Grade, Moses Lake, WA Astrocoquí 2, 9th-12th Grade, Mayaguez, PR Big Sky Celestials, 9th-12th Grade, Billings, MT TRYOUTS, 9th-12th Grade, Columbus, MT Cosmonaughts, 9th-12th Grade, Columbus, MT TCCS 114, 9th-12th Grade, Tillamook, OR Marvin’s Mighty Martians, 9th-12th Grade, Simms, TX You can see highlights of these teams’ work in the Virtual Recognition Ceremony video on the NESSP YouTube channel. The presentation also features the teams selected to travel to Kennedy Space Center in August of 2025, the ultimate prize for these future space explorers!
In addition to student engagement, the ROADS program provided professional development workshops and NGSS-aligned classroom resources to support K–12 educators. Teachers are invited to explore these materials and register for the next round of workshops, beginning in August 2025: https://nwessp.org/professional-development-registration.
For more information about NESSP, its programs, partners, and the ROADS National Challenge, visit www.nwessp.org or contact info@nwessp.org.
———–
NASA’s Northwest Earth and Space Science Pathways’ (NESSP) project is supported by NASA cooperative agreement award number 80NSSC22M0006 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
A water bottle rocket launches into the air carrying its precious chip-stronaut cargo. Share
Details
Last Updated Jun 23, 2025 Editor NASA Science Editorial Team Related Terms
Artemis Biological & Physical Sciences Planetary Science Science Activation Explore More
3 min read NASA Scientists Find Ties Between Earth’s Oxygen and Magnetic Field
Article
5 days ago
3 min read NASA Interns Conduct Aerospace Research in Microgravity
Article
4 weeks ago
5 min read Percolating Clues: NASA Models New Way to Build Planetary Cores
Article
1 month ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By European Space Agency
Today, at the Living Planet Symposium, ESA revealed the first stunning images from its groundbreaking Biomass satellite mission – marking a major leap forward in our ability to understand how Earth’s forests are changing and exactly how they contribute to the global carbon cycle. But these inaugural glimpses go beyond forests. Remarkably, the satellite is already showing potential to unlock new insights into some of Earth’s most extreme environments.
View the full article
-
By European Space Agency
Week in images: 16-20 June 2025
Discover our week through the lens
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.