Jump to content

Recommended Posts

  • Publishers
Posted
Editor's Corner header

8 min read

The Earth Observer Editor’s Corner: Summer 2024

Welcome to a new era for The Earth Observer newsletter! This communication marks the official public release of our new website. While this release moves us into a new online future, the newsletter team has worked to ensure the new website also allows for continuity with our publication’s robust 35-year history.  The Executive Editor has written a more detailed overview of our new site that is posted separately.

I am happy to report on the success of several recent launches. The Geostationary Operational Environmental Satellite–U (GOES-U) successfully launched at 5:26 PM Eastern Daylight Time (EDT) on June 25 aboard a SpaceX Falcon Heavy rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

GOES-U (renamed GOES-19 after reaching geostationary orbit on July 8) is the fourth and final satellite in the GOES-R Series, providing advanced imagery and atmospheric measurements, real-time mapping of lightning activity, and space weather observations. Once the checkout phase is complete, NASA will hand operational control to NOAA. After checkout, the plan is for GOES-19 to replace GOES-16 (originally GOES–R) as GOES-East. GOES-19 will work in tandem with GOES-18 (GOES–T), NOAA’s GOES-West satellite, to enable observations from the west coast of Africa to New Zealand.

In addition to its critical role in terrestrial weather prediction, the GOES constellation of satellites helps forecasters predict near Earth space weather that can interfere with satellite and terrestrial electronics and communication. The GOES-U satellite goes beyond the capabilities of its predecessors with a new space weather instrument, the Compact Coronagraph-1 (CCOR-1), which blocks light from the solar disk to allow imagery of the faint solar corona, providing low latency observations for detecting coronal mass ejections.

Speaking of space weather, Solar Cycle 25 is nearing its peak, which typically results in an increase in solar activity and geomagnetic storms. A particularly intense geomagnetic storm took place in mid-May 2024—the strongest in over two decades The G5 storm culminated in a remarkable display of the aurora overnight—in both hemispheres—on May 10–11, visible from many areas worldwide—including latitudes where sightings of auroras are uncommon. It also caused concerns for the safety of some of NASA’s Earth science satellite missions, although fortunately there was no lasting impact.

The aurora produced by the storm could be observed from the day-night band on the NASA–NOAA Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) that is sensitive enough to detect nighttime light across a broad band of wavelengths (green to near-infrared) to observe signals such as city lights, reflected moonlight, and auroras. VIIRS captured the image shown below on the night of May 11, 2024. 

Editor's Corner Figure
Figure. The day-night band on Visible Infrared Imaging Radiometer Suite (VIIRS) captured this image of the aurora borealis that occurred on the night of May 11, 2024, as the culminating event of a particularly intense geomagnetic storm that occurred in May 2024. In this view, the northern lights appear as a bright white strip across parts of Montana, Wyoming, the Dakotas, Minnesota, Wisconsin, Iowa, and Michigan. 
Figure credit: NASA’s Earth Observatory

There were two deployments from the International Space Station (ISS) as part of NASA’s Earth Science Technology Office (ESTO) In-Space Validation of Earth Science Technologies (InVEST) program. The SigNals Of Opportunity: P-band Investigation (SNOOPI) was launched on March 21 from NASA’s Cape Canaveral Space Force Station to the International Space Station aboard SpaceX’s Dragon cargo spacecraft (CRS-30) as part of the company’s thirtieth commercial resupply mission. On April 21, the instrument was released into orbit from the station. The SNOOPI mission will demonstrate and validate the in-space use of P-band (~300 MHz) signals of opportunity to measure root zone soil moisture and snow water equivalent, reducing the risk of utilizing this technique on future space missions. SNOOPI will also verify important assumptions about reflected signal coherence, robustness to the RFI environment, and the ability to capture and process the transmitted signal in space. James Garrison [Purdue University] is PI for SNOOPI, with co-investigators from GSFC.

The Hyperspectral Thermal Imager (HyTI) CubeSat was also flown aboard CRS-30 and deployed from the ISS. HyTI is a technology demonstration mission by the University of Hawaiiʻi at Mānoa designed to demonstrate how high spatial resolution (60-m ground resolution), high spectral resolution (25 bands), and long-wave infrared image data can be acquired to monitor water resources using a 6U CubeSat. Robert Wright [University of Hawaiʻi at Mānoa] is principal investigator for HyTI.

NASA is conducting the Arctic Radiation Cloud Aerosol Surface Interaction Experiment (ARCSIX) over the Arctic Ocean north of Greenland this spring and summer. Altogether, about 75 scientists (including sea ice surface researchers, aerosol researchers, and cloud researchers), along with instrument operators and flight crew, are participating in ARCSIX’s two phases based out of Pituffik Space Base in northwest Greenland. The first three-week deployment, from late May to mid-June of this year, was timed to document the start of the ice melt season. The second deployment will occur in late July and August to monitor late summer conditions leading up to the freeze-up period.

As part of ARCSIX, NASA is flying two of its aircraft, with the first flights having occurred on May 28, 2024. The P-3 Orion aircraft from NASA’s Wallops Flight Facility flies at relatively low altitudes to characterize sea ice surface properties, the optical and microphysical properties of cloud and aerosol particles, atmospheric chemistry, radiative fluxes, and other lower atmospheric properties. At the same time, a Gulfstream III aircraft, managed by NASA’s Langley Research Center, flies at higher altitudes to provide hyperspectral imagery and obtain atmospheric profiles, adding a perspective similar to those of orbiting satellites.

Two members of NASA’s Earth observing fleet celebrate milestone anniversaries this summer. The third of NASA’s EOS Flagships—Aura—marks 20 years in orbit on July 15. During the 1990s and early 2000s, an international team of engineers and scientists worked together to design the first integrated observatory for studying atmospheric composition. This was a “bold endeavor” at the time, intended to provide unprecedented detail essential to understanding how Earth’s ozone layer and air quality respond to changes in atmospheric composition caused by both human activities and natural phenomena, a key NASA Earth science objective. The Aura spacecraft (Latin for “breeze” and “air”) was launched on July 15, 2004, with its four instruments.

Twenty years later, the spacecraft and two of its instruments, the Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI), are in remarkable shape, which is a testament to Aura’s solid engineering. MLS and OMI are remarkably stable, allowing for the continuation of their science- and trend-quality datasets. However, all good things must come to an end. Insufficient solar power generation will require that data collection end in mid-2026. In the meantime, MLS and OMI will continue to monitor the everchanging composition of Earth’s atmosphere. I extend my congratulations to Bryan Duncan [GSFC—Aura Project Scientist] and the entire Aura team, past and present, on this remarkable achievement.

On July 2, 2024, the Orbiting Carbon Observatory-2 (OCO-2) celebrated ten years since its launch, marking a decade of gold-standard measurements of carbon dioxide (CO2) from space. OCO-2 was originally designed as a pathfinder mission to measure CO2 with the precision and accuracy needed to quantify regional sources and sinks of this key greenhouse gas.

OCO-2 has tracked the relentless rise of CO2 in our atmosphere and has provided unprecedented information on where, when, and how CO2 is released into and removed from the atmosphere. OCO-2 data have provided new insights into how CO2 emissions are offset by natural carbon sinks such as forests and oceans. The data have demonstrated that spaceborne measurements can be used to accurately quantify CO2 emissions from power plants and cities. The long-term, global record has also been used to examine the two-way interactions between CO2 and climate. As the length of the data record has increased, OCO-2 is beginning to be able to provide policy-relevant information and to address an ever more diverse range of carbon cycle science questions. Because of the mission’s success, NASA now has two instruments in space monitoring Earth’s carbon cycle. OCO-2’s spare parts were repurposed and nested as OCO-3 on the International Space Station in 2019. OCO-2 is unique among NASA missions in providing near-global sampling in combination with the spectral resolution and signal to noise needed to provide CO2 with the sensitivity required to inform studies of the natural carbon cycle as well as anthropogenic sources. The OCO-2 mission has been and will remain a key element of any U.S. or international greenhouse gas observational network to enhance our scientific understanding of the carbon cycle and inform climate mitigation efforts. Congratulations to Vivienne Payne [JPL—OCO-2 Principal Investigator] and the entire OCO-2 team on this noteworthy achievement.

The Earth Observer plans more in-depth feature coverage of both these missions celebrating milestones in July over the coming months. Last but certainly not least, I would like to congratulate Sarah Ringerud [GSFC] on being chosen as the Deputy Project Scientist for the Global Precipitation Measurement (GPM) mission. Ringerud holds a Ph.D. in Atmospheric Science with an emphasis on Remote Sensing from Colorado State University. Ringerud is a research meteorologist at GSFC, leading projects focused on GPM and future mission concepts. Her expertise lies in satellite algorithm development, particularly for microwave instruments, and she actively collaborates with government and academic partners to advance the field of precipitation remote sensing. Congratulations to Sarah and best wishes in her new role. 

Steve Platnick
EOS Senior Project Scientist
steven.e.platnick@nasa.gov

Share

Details

Last Updated
Jul 18, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Psyche captured images of Earth and our Moon from about 180 million miles (290 kilometers) away in July 2025, as it calibrated its imager instrument. When choosing targets for the imager testing, scientists look for bodies that shine with reflected sunlight, just as the asteroid Psyche does.NASA/JPL-Caltech/ASU Headed for a metal-rich asteroid of the same name, the Psyche spacecraft successfully calibrated its cameras by looking homeward.
      On schedule for its 2029 arrival at the asteroid Psyche, NASA’s Psyche spacecraft recently looked back toward home and captured images of Earth and our Moon from about 180 million miles (290 million kilometers) away. The images were obtained during one of the mission team’s periodic checkouts of the spacecraft’s science instruments.
      On July 20 and July 23, the spacecraft’s twin cameras captured multiple long-exposure (up to 10-second) pictures of the two bodies, which appear as dots sparkling with reflected sunlight amid a starfield in the constellation Aries.
      Learn more about the multispectral imager aboard Psyche that will use a pair of identical cameras with filters and telescopic lenses to photograph the surface of the asteroid in different wavelengths of light. NASA/JPL-Caltech/ASU The Psyche multispectral imager instrument comprises a pair of identical cameras equipped with filters and telescopic lenses to photograph the asteroid Psyche’s surface in different wavelengths of light. The color and shape of a planetary body’s spectrum can reveal details about what it’s made of. The Moon and the giant asteroid Vesta, for example, have similar kinds of “bumps and wiggles” in their spectra that scientists could potentially also detect at Psyche. Members of the mission’s science team are interested in Psyche because it will help them better understand the formation of rocky planets with metallic cores, including Earth.
      When choosing targets for the imager testing and calibration, scientists look for bodies that shine with reflected sunlight, just as the asteroid Psyche does. They also look at objects that have a spectrum they’re familiar with, so they can compare previous telescopic or spacecraft data from those objects with what Psyche’s instruments observe. Earlier this year, Psyche turned its lenses toward Jupiter and Mars for calibration — each has a spectrum more reddish than the bluer tones of Earth. That checkout also proved a success.
      The Psyche spacecraft is taking a spiral path around the solar system in order to get a boost from a Mars gravity assist in 2026. It will arrive at the asteroid Psyche in 2029. NASA/JPL-Caltech To determine whether the imager’s performance is changing, scientists also compare data from the different tests. That way, when the spacecraft slips into orbit around Psyche, scientists can be sure that the instrument behaves as expected.
      “After this, we may look at Saturn or Vesta to help us continue to test the imagers,” said Jim Bell, the Psyche imager instrument lead at Arizona State University in Tempe. “We’re sort of collecting solar system ‘trading cards’ from these different bodies and running them through our calibration pipeline to make sure we’re getting the right answers.”
      Strong and Sturdy
      The imager wasn’t the only instrument that got a successful checkout in late July: The mission team also put the spacecraft’s magnetometer and the gamma-ray and neutron spectrometer through a gamut of tests — something they do every six months.
      “We are up and running, and everything is working well,” said Bob Mase, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “We’re on target to fly by Mars in May 2026, and we are accomplishing all of our planned activities for cruise.”
      That flyby is the spacecraft’s next big milestone, when it will use the Red Planet’s gravity as a slingshot to help the spacecraft get to the asteroid Psyche. That will mark Psyche’s first of two planned loops around the solar system and 1 billion miles (1.6 billion kilometers) since launching from NASA’s Kennedy Space Center in October 2023.
      More About Psyche
      The Psyche mission is led by ASU. Lindy Elkins-Tanton of the University of California, Berkeley is the principal investigator.A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. ASU leads the operations of the imager instrument, working in collaboration with Malin Space Science Systems in San Diego on the design, fabrication, and testing of the cameras.
      Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, managed the launch service.
      For more information about NASA’s Psyche mission go to:
      http://www.science.nasa.gov/mission/psyche
      Check out the Psyche spacecraft’s trajectory in 3D News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-106
      Share
      Details
      Last Updated Aug 19, 2025 Related Terms
      Psyche Mission Asteroids Jet Propulsion Laboratory The Solar System Explore More
      3 min read Summer Triangle Corner: Altair
      Altair is the last stop on our trip around the Summer Triangle! The last star…
      Article 4 days ago 5 min read NASA’s Apollo Samples, LRO Help Scientists Forecast Moonquakes
      Moonquakes pose little risk to astronauts during a mission lasting just a few days. But…
      Article 5 days ago 4 min read US-French SWOT Satellite Measures Tsunami After Massive Quake
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
    • By NASA
      3 min read
      Summer Triangle Corner: Altair
      A map of the asterism known as the Summer Triangle. This asterism is made up of three stars: Vega in the Lyra constellation, Altair in the Aquila constellation, and Deneb in the Cygnus constellation. Stellarium Web Altair is the last stop on our trip around the Summer Triangle! The last star in the asterism to rise for Northern Hemisphere observers before summer begins, brilliant Altair is high overhead at sunset at the end of the season in September. Altair might be the most unusual of the three stars of the Triangle, due to its great speed: this star spins so rapidly that it appears “squished.”
      Altair is the brightest star in the constellation of Aquila, the Eagle. A very bright star, Altair holds a notable place in the mythologies of cultures around the world. As discussed in a previous article, Altair represents the cowherd in the ancient tale “Cowherd and the Weaver Girl.” While described as part of an eagle by ancient peoples around the Mediterranean, it was also seen as part of an eagle by the Koori people in Australia. They saw the star itself as representing a wedge-tailed eagle, and two nearby stars as his wives, a pair of black swans. More recently, one of the first home computers was named after the star: the Altair 8800.
      A rapidly spinning star darkens and exhibits a bulge at the equator, as shown by the model at left. At right, an actual CHARA interferometer image of the star Altair. NASA/NSF/Center for High Angular Resolution Astronomy/Zina Deretsky Altair’s rapid spinning was first detected in the 1960s. The close observations that followed tested the limits of technology available to astronomers, eventually resulting in direct images of the star’s shape and surface by using a technique called interferometry, which combines the light from two or more instruments to produce a single image. Predictions about how the surface of a rapidly spinning massive star would appear held true to the observations; models predicted a squashed, almost “pumpkin-like” shape instead of a round sphere, along with a dimming effect along the widened equator, and the observations confirmed this!
      This equatorial dimming is due to a phenomenon called gravity darkening. Altair is wider at the equator than it is at the poles due to centrifugal force, resulting in the star’s mass bulging outwards at the equator. This results in the denser poles of the star being hotter and brighter, and the less dense equator being cooler and therefore dimmer. This doesn’t mean that the equator of Altair or other rapidly spinning stars are actually dark, but rather that the equator is dark in comparison to the poles; this is similar in a sense to sunspots. If you were to observe a sunspot on its own, it would appear blindingly bright, but it is cooler than the surrounding plasma in the Sun and so appears dark in contrast.
      As summer winds down, you can still take a Trip Around the Summer Triangle with this activity from the Night Sky Network. Mark some of the sights in and around the Summer Triangle at: bit.ly/TriangleTrip.
      Originally posted by Dave Prosper: August 2020
      Last Updated by Kat Troche: July 2025
      View the full article
    • By Amazing Space
      🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
    • By European Space Agency
      The exoplanet TRAPPIST-1 d intrigues astronomers looking for possibly habitable worlds beyond our solar system because it is similar in size to Earth, rocky, and resides in an area around its star where liquid water on its surface is theoretically possible. But according to a new study using data from the NASA/ESA/CSA James Webb Space Telescope, it does not have an Earth-like atmosphere.
      View the full article
  • Check out these Videos

×
×
  • Create New...