Jump to content

An Ancient Partnership: Co-Evolution of Earth Environments and Microbial LifeAn Ancient Partnership:


Recommended Posts

  • Publishers
Posted

NASA-supported scientists have examined the long and intricately linked history of microbial life and the Earth’s environment. By reviewing the current state of knowledge across fields like microbiology, molecular biology, and geology, the study looks at how microorganisms have both shaped and been shaped by chemical properties of our planet’s oceans, land, and atmosphere. The study combines data across multiple fields of study and discusses how information on the complicated history of life on our planet from a single field cannot be viewed in isolation.

An illustration of ancient Earth. It appears yellow/orange in color with hazy clouds covering much of the surface. The planet sits in a field of black.
An artist interpretation of the hazy atmosphere of Archean Earth – a pale orange dot.
NASA’s Goddard Space Flight Center/Francis Reddy

The first life on Earth was microbial. Today the vast majority of our planet’s biomass is still made up of tiny, single-celled microorganisms. Although they’re abundant, the history of microbes can be a challenge for astrobiologists to study. Microbes don’t leave bones, shells or other large fossils behind like dinosaurs, fish or other large organisms. Because of this, scientists must look at different evidence to understand the evolution of microbial life through time.

In order to study ancient microbes on Earth, astrobiologists look for isotopic fingerprints in rocks that can be used to identify the metabolisms of ancient communities. Metabolism refers to the conversion of food into energy, and happens in all living things. Many elements (think carbon (C), nitrogen (N), Sulfur (S), iron (Fe)) are involved in microbial metabolism. As microbes process these elements, they cause isotopic changes that scientists can spot in the rock record. Microbes also help to control how these elements are deposited and cycled in the environment, affecting geology and chemistry at both local and global scales (consider the role of microbes in the carbon cycle on Earth today).

Perspective photograph of a rocky outcrop. In the foreground, the rock is streaked with shades of red and orange, almost appearing as if it is flowing down like liquid from the peak of rock at the summit of the outcrop in the distance.
This photograph shows a section of the Marble Bar formation in the Pilbara region of north-western Western Australia. The bands of color in the rock are the result of high amounts of certain minerals, including iron, that may have resulted from microbial activity on the ancient Earth.
NASA Astrobiology/Mike Toillion

For an example of geological evidence of microbial metabolism, we can consider the formation of banded iron formations (BIFs) on the ancient seafloor. These colorful layers of alternating iron- and silicon-rich sediment were formed from 3.8 billion to 1.8 billion years ago and are associated with some of the oldest rock formations on Earth. The red colors they exhibit are from their high iron content, showing us that the ocean of Earth was rich in iron during the 2 billion years in which these rocks were forming.

Another way to study ancient microbial life is to look back along the evolutionary information contained in the genetics of life today. Combining this genetic information from molecular biology with geobiological information from the rock record can help astrobiologists understand the connections between the shared evolution of the early Earth and early life.

In the new study, the team of researchers provide a review of current knowledge, gleaning information into the early metabolisms used by microbial life, the timing of when these metabolisms evolved, and how these processes are linked to major chemical and physical changes on Earth, such as the oxygenation of the oceans and atmosphere.

Over time, the prevalence of oxygen on Earth has varied dramatically, in the ocean, in the atmosphere, and on land. These changes impacted both the evolution of the biosphere and the environment. For instance, as the activity of photosynthetic organisms raised oxygen levels in the atmosphere, creating new environments for microbial life to inhabit. Different nutrients were made accessible to life to fuel growth. At the same time, microbes that couldn’t survive in the presence of oxygen had to adapt, perish, or find a way to survive in environments where oxygen didn’t persist, such as deep in the Earth’s subsurface.

The clear, light blue water of Lake Salda fills most of the frame. Across the lake, hills can be seen on the horizon. Beneath the water are yellowish structures that resemble balls of coral that are almost brain-like.
Rocks along the shoreline of Lake Salda in Turkey were formed over time by microbes that trap minerals in the water. These microbialites were once a major form of life on Earth.

The new study explains our understanding of how oxygen levels have changed over time and spatial scales. The authors map different types of microbial metabolism, such as photosynthesis, to this history to better understand the “cause-and-effect relationship” between oxygen and the evolution of life on Earth. The paper provides important context for major changes in the course of evolution for the biosphere and the planet.

By carefully considering the history of different types of microbial metabolisms on Earth, the review paper shows how biogeochemical cycles on our planet are inextricably linked through time over both local and global scales. The authors also discuss significant gaps in our knowledge that limit interpretations. For instance, we do not know how large the young biosphere on Earth was, which limits our ability to estimate the global effects of various metabolisms during Earth’s earliest years. Similarly, when using genetic information to look back along the tree of life, scientists can estimate when certain genes first appeared (and thereby what types of metabolisms could have been used at the time in living cells). However, the evolution of a new type of metabolism at a point in history does not necessarily mean that that metabolism was common or had a large enough effect in the environment to leave evidence in the rock record.

According to the authors, “The history of microbial life marched in step with the history of the
oceans, land and atmosphere, and our understanding remains limited by how much we still do not know about the environments of the early Earth.”

Illustration of a planet and its star on an empty black background. The planet is large, in the foreground at the center and the star is smaller, in the background at the upper left.
This is an illustration of exoplanet WASP-39 b, also known as Bocaprins. NASA’s James Webb Space Telescope provided the most detailed analysis of an exoplanet atmosphere ever with WASP-39 b analysis released in November 2022. Webb’s Near-Infrared Spectrograph (NIRSpec) showed unambiguous evidence for carbon dioxide in the atmosphere, while previous observations from NASA’s Hubble and Spitzer Space Telescopes, as well as other telescopes, indicate the presence of water vapor, sodium, and potassium. The planet probably has clouds and some form of weather, but it may not have atmospheric bands like those of Jupiter and Saturn. This illustration is based on indirect transit observations from Webb as well as other space and ground-based telescopes. Webb has not captured a direct image of this planet.
NASA, ESA, CSA, Joseph Olmsted (STScI)

The study also has wider implications in the search for life beyond Earth. Understanding the co-evolution of life and the environment can help scientists better understand the conditions necessary for a planet to be habitable. The interconnections between life and the environment also provide important clues in the search for biosignature gases in the atmospheres of planets that orbit distant stars.

The study, “Co‐evolution of early Earth environments and microbial life,” was published in the journal Nature Reviews. Additional information on the study is available from the University of California, Riverside.

Click here to return to the NASA Astrobiology page.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Psyche captured images of Earth and our Moon from about 180 million miles (290 kilometers) away in July 2025, as it calibrated its imager instrument. When choosing targets for the imager testing, scientists look for bodies that shine with reflected sunlight, just as the asteroid Psyche does.NASA/JPL-Caltech/ASU Headed for a metal-rich asteroid of the same name, the Psyche spacecraft successfully calibrated its cameras by looking homeward.
      On schedule for its 2029 arrival at the asteroid Psyche, NASA’s Psyche spacecraft recently looked back toward home and captured images of Earth and our Moon from about 180 million miles (290 million kilometers) away. The images were obtained during one of the mission team’s periodic checkouts of the spacecraft’s science instruments.
      On July 20 and July 23, the spacecraft’s twin cameras captured multiple long-exposure (up to 10-second) pictures of the two bodies, which appear as dots sparkling with reflected sunlight amid a starfield in the constellation Aries.
      Learn more about the multispectral imager aboard Psyche that will use a pair of identical cameras with filters and telescopic lenses to photograph the surface of the asteroid in different wavelengths of light. NASA/JPL-Caltech/ASU The Psyche multispectral imager instrument comprises a pair of identical cameras equipped with filters and telescopic lenses to photograph the asteroid Psyche’s surface in different wavelengths of light. The color and shape of a planetary body’s spectrum can reveal details about what it’s made of. The Moon and the giant asteroid Vesta, for example, have similar kinds of “bumps and wiggles” in their spectra that scientists could potentially also detect at Psyche. Members of the mission’s science team are interested in Psyche because it will help them better understand the formation of rocky planets with metallic cores, including Earth.
      When choosing targets for the imager testing and calibration, scientists look for bodies that shine with reflected sunlight, just as the asteroid Psyche does. They also look at objects that have a spectrum they’re familiar with, so they can compare previous telescopic or spacecraft data from those objects with what Psyche’s instruments observe. Earlier this year, Psyche turned its lenses toward Jupiter and Mars for calibration — each has a spectrum more reddish than the bluer tones of Earth. That checkout also proved a success.
      The Psyche spacecraft is taking a spiral path around the solar system in order to get a boost from a Mars gravity assist in 2026. It will arrive at the asteroid Psyche in 2029. NASA/JPL-Caltech To determine whether the imager’s performance is changing, scientists also compare data from the different tests. That way, when the spacecraft slips into orbit around Psyche, scientists can be sure that the instrument behaves as expected.
      “After this, we may look at Saturn or Vesta to help us continue to test the imagers,” said Jim Bell, the Psyche imager instrument lead at Arizona State University in Tempe. “We’re sort of collecting solar system ‘trading cards’ from these different bodies and running them through our calibration pipeline to make sure we’re getting the right answers.”
      Strong and Sturdy
      The imager wasn’t the only instrument that got a successful checkout in late July: The mission team also put the spacecraft’s magnetometer and the gamma-ray and neutron spectrometer through a gamut of tests — something they do every six months.
      “We are up and running, and everything is working well,” said Bob Mase, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California. “We’re on target to fly by Mars in May 2026, and we are accomplishing all of our planned activities for cruise.”
      That flyby is the spacecraft’s next big milestone, when it will use the Red Planet’s gravity as a slingshot to help the spacecraft get to the asteroid Psyche. That will mark Psyche’s first of two planned loops around the solar system and 1 billion miles (1.6 billion kilometers) since launching from NASA’s Kennedy Space Center in October 2023.
      More About Psyche
      The Psyche mission is led by ASU. Lindy Elkins-Tanton of the University of California, Berkeley is the principal investigator.A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis. ASU leads the operations of the imager instrument, working in collaboration with Malin Space Science Systems in San Diego on the design, fabrication, and testing of the cameras.
      Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, managed the launch service.
      For more information about NASA’s Psyche mission go to:
      http://www.science.nasa.gov/mission/psyche
      Check out the Psyche spacecraft’s trajectory in 3D News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-106
      Share
      Details
      Last Updated Aug 19, 2025 Related Terms
      Psyche Mission Asteroids Jet Propulsion Laboratory The Solar System Explore More
      3 min read Summer Triangle Corner: Altair
      Altair is the last stop on our trip around the Summer Triangle! The last star…
      Article 4 days ago 5 min read NASA’s Apollo Samples, LRO Help Scientists Forecast Moonquakes
      Moonquakes pose little risk to astronauts during a mission lasting just a few days. But…
      Article 5 days ago 4 min read US-French SWOT Satellite Measures Tsunami After Massive Quake
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By USH
      The weight of the gods was crushing, their toil beyond endurance. Let the burden pass to humankind! So speak the oldest verses carved into clay, a fragment from the Atrahasis tale of Mesopotamia. Yet what if these divine figures were not simply legends? What if the stories hint at something far older and stranger than we have allowed ourselves to believe? The name Anunnaki comes from the etched symbols of Sumerian records, their lines recounting the deeds of deities who shaped the world and watched over the Earth. 

      From the cradle of ancient Mesopotamia comes a story older than any empire, etched into clay tablets and whispered through time: the tale of the Anunnaki. Were they gods, symbols, or something far stranger visitors from beyond the stars who shaped human civilization? The myths of Sumer speak of creation, rebellion, giants, and a great flood. But when paired with the ancient astronaut theory, these legends take on a new dimension, one that could rewrite human history.  
      Who were the Anunnaki? In the ancient Sumerian texts of Mesopotamia, they are described as the offspring of An, the sky god, and Ki, the earth goddess. Their names appear across the Atrahasis epic, the Enuma Elish, the Epic of Gilgamesh, and the Sumerian King List, etched into clay tablets more than 4,000 years ago. 
      To mainstream historians, the Anunnaki are mythological gods. Yet in the ancient astronaut theory, they were real beings, extraterrestrial visitors who shaped early civilization. 
      Author Zecharia Sitchin popularized the idea that the Anunnaki came from Nibiru, a hidden “twelfth planet” on a long, elliptical orbit. According to his interpretation of Sumerian records, the Anunnaki faced an environmental crisis. Their planet’s atmosphere was failing, and the solution they sought was gold, which could be ground into particles and suspended as a shield. 
      This quest for survival brought them to Earth more than 400,000 years ago. They mined resources, altered life, and may even have engineered humanity itself. 
      The tablets describe how the lesser gods, the Igigi, were forced into back-breaking labor until they rebelled. To replace them, the Anunnaki created humans. 
      In myth, mankind was formed from clay mixed with divine blood. In Sitchin’s interpretation, this was genetic engineering: the fusion of Anunnaki DNA with Homo erectus. The first prototype was Adamu, a name that echoes the biblical Adam. 
      The Sumerian “Edin,” later mirrored in the Hebrew Eden, may not have been a paradise garden but an Anunnaki laboratory outpost. 
      Two Anunnaki brothers shaped humanity’s destiny: Enki – the god of wisdom and waters, often seen as humanity’s ally, granting knowledge. Enlil – stern and authoritarian, seeking control and fearing that humans might grow too powerful. Their rivalry runs through Mesopotamian myth, influencing stories of divine punishment, survival, and human struggle. 
      Over time, some Anunnaki defied the rules and took human women as partners. Their offspring were the Nephilim, giants and “mighty men of renown.” The Book of Enoch calls their fathers the Watchers, led by Shemyaza.  
      According to the stories, these hybrids grew violent, corrupted the world, and became uncontrollable. The solution was drastic: a great flood to wipe the Earth clean. 
      The Atrahasis epic, the story of Utnapishtim in the Epic of Gilgamesh, and the biblical Noah all describe the same event: a chosen man warned by a god, a vessel built to preserve life, animals carried aboard, and birds released to find land. Humanity survived, but weaker, with shorter lifespans, and forever changed. 
      Supporters of the ancient astronaut theory believe the Anunnaki left traces in stone: 
      Mesopotamian ziggurats – described as “bonds between heaven and earth,” possibly landing platforms. 
      The Great Pyramid of Giza – aligned to true north, massive in scale, theorized as a power plant or beacon rather than a tomb. 
      Megalithic monuments worldwide – stone circles, cyclopean walls, and sacred sites possibly linked to Anunnaki influence. 
      The Sumerian King List also suggests a divine legacy, describing rulers with lifespans of thousands of years, perhaps evidence of semi-divine hybrids. 
      Mainstream archaeology sees the Anunnaki as symbolic deities, metaphors for cosmic order and human struggle. But in alternative history, they were real beings, extraterrestrial visitors from Nibiru, who shaped civilization, taught astronomy, metallurgy, agriculture, and law, and left their mark in myths and monuments that endure to this day. 
      Explore the mystery of the Anunnaki—Sumerian gods, Nibiru, genetic engineering, Nephilim, the Great Flood, and the ancient astronaut theory in the video below.
        View the full article
    • By Amazing Space
      🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
    • By Amazing Space
      🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
    • By European Space Agency
      The exoplanet TRAPPIST-1 d intrigues astronomers looking for possibly habitable worlds beyond our solar system because it is similar in size to Earth, rocky, and resides in an area around its star where liquid water on its surface is theoretically possible. But according to a new study using data from the NASA/ESA/CSA James Webb Space Telescope, it does not have an Earth-like atmosphere.
      View the full article
  • Check out these Videos

×
×
  • Create New...