Jump to content

Recommended Posts

  • Publishers
Posted
15 Min Read

The Marshall Star for July 17, 2024

The core stage of the Artemis Space Launch System being loaded on a covered barge. The stage is a large cylinder shape with the engines facing toward the camera on two yellow transporters that are guiding the stage into a covered grey container in the background. The body of the cylinder is mostly an orange color and white around the bottom. The four engines on the bottom are covered with red material.

NASA Ships Moon Rocket Stage Ahead of First Crewed Artemis Flight

NASA rolled out the SLS (Space Launch System) rocket’s core stage for the Artemis II test flight from its Michoud Assembly Facility on Tuesday for shipment to the agency’s Kennedy Space Center. The rollout is key progress on the path to NASA’s first crewed mission to the Moon under the Artemis campaign.

Using highly specialized transporters, engineers maneuvered the giant core stage from inside Michoud to NASA’s Pegasus barge. The barge will ferry the stage more than 900 miles to Kennedy, where engineers will prepare it in the Vehicle Assembly Building for attachment to other rocket and Orion spacecraft elements.

The core stage of the Artemis Space Launch System being loaded on a covered barge. The stage is a large cylinder shape with the engines facing toward the camera on two yellow transporters that are guiding the stage into a covered grey container in the background. The body of the cylinder is mostly an orange color and white around the bottom. The four engines on the bottom are covered with red material.
Move teams with NASA and Boeing, the SLS core stage lead contractor, position the massive rocket stage for NASA’s SLS rocket on special transporters to strategically guide the flight hardware the 1.3-mile distance from the factory floor onto the agency’s Pegasus barge on July 16. The core stage will be ferried to NASA’s Kennedy Space Center in Florida, where it will be integrated with other parts of the rocket that will power NASA’s Artemis II mission. Pegasus is maintained at NASA’s Michoud Assembly Facility.
Credit: NASA

“With Artemis, we’ve set our sights on doing something big and incredibly complex that will inspire a new generation, advance our scientific endeavors, and move U.S. competitiveness forward,” said Catherine Koerner, associate administrator for NASA’s Exploration Systems Development Mission Directorate at NASA Headquarters. “The SLS rocket is a key component of our efforts to develop a long-term presence at the Moon.”

Technicians moved the SLS rocket stage from inside Michoud on the 55th anniversary of the launch of Apollo 11 on July 16, 1969. The move of the rocket stage for Artemis marks the first time since the Apollo Program that a fully assembled Moon rocket stage for a crewed mission rolled out from Michoud.

The NASA Michoud Assembly Facility workforce and with other agency team members take a “family photo” with the SLS (Space Launch System) core stage for Artemis II in the background on July 16 at Michoud. The core stage will help launch the first crewed flight of NASA’s SLS rocket for the agency’s Artemis II mission.
The NASA Michoud Assembly Facility workforce and with other agency team members take a “family photo” with the SLS (Space Launch System) core stage for Artemis II in the background on July 16 at Michoud. The core stage will help launch the first crewed flight of NASA’s SLS rocket for the agency’s Artemis II mission.
NASA

The SLS rocket’s core stage is the largest NASA has ever produced. At 212 feet tall, it consists of five major elements, including two huge propellant tanks that collectively hold more than 733,000 gallons of super-chilled liquid propellant to feed four RS-25 engines. During launch and flight, the stage will operate for just over eight minutes, producing more than 2 million pounds of thrust to propel four astronauts inside NASA’s Orion spacecraft toward the Moon.

“The delivery of the SLS core stage for Artemis II to Kennedy Space Center signals a shift from manufacturing to launch readiness as teams continue to make progress on hardware for all major elements for future SLS rockets,” said John Honeycutt, SLS program manager at NASA’s Marshall Space Flight Center. “We are motivated by the success of Artemis I and focused on working toward the first crewed flight under Artemis.”

Team members on July 16 move the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission. The move marked the first time a fully assembled Moon rocket stage for a crewed mission has rolled out from NASA’s Michoud Assembly Facility in New Orleans since the Apollo Program.
Team members on July 16 move the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission. The move marked the first time a fully assembled Moon rocket stage for a crewed mission has rolled out from NASA’s Michoud Assembly Facility in New Orleans since the Apollo Program.
NASA

After arrival at Kennedy, the stage will undergo additional outfitting inside the Vehicle Assembly Building. Engineers then will join it with the segments that form the rocket’s twin solid rocket boosters. Adapters for the Moon rocket that connect it to the Orion spacecraft will be shipped to Kennedy this fall, where the interim cryogenic propulsion stage is already. Engineers at Kennedy continue to prepare Orion and exploration ground systems for launch and flight.

All major structures for every SLS core stage are fully manufactured at Michoud. Inside the factory, core stages and future exploration upper stages for the next evolution of SLS, called the Block 1B configuration, currently are in various phases of production for Artemis III, IV, and V. Beginning with Artemis III, to better optimize space at Michoud, Boeing – the SLS core stage prime contractor – will use space at Kennedy for final assembly and outfitting activities.

Team members at Michoud Assembly Facility load the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission onto the Pegasus barge on July 16. The barge will ferry the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility in New Orleans to its Kennedy Space Center in Florida.
Team members at Michoud Assembly Facility load the first core stage that will help launch the first crewed flight of NASA’s SLS (Space Launch System) rocket for the agency’s Artemis II mission onto the Pegasus barge on July 16. The barge will ferry the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility in New Orleans to its Kennedy Space Center in Florida.
NASA

Building, assembling, and transporting the SLS core stage is a collaborative effort for NASA, Boeing, and lead RS-25 engines contractor Aerojet Rocketdyne, an L3Harris Technologies company. All 10 NASA centers contribute to its development with more than 1,100 companies across the United States contributing to its production. 

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

› Back to Top

NASA Barge Preparations for Artemis II Rocket Stage Delivery

Team members installed pedestals aboard NASA’s Pegasus barge to hold and secure the massive core stage of NASA’s SLS (Space Launch System) rocket, preparing NASA barge crews for their first delivery to support the Artemis II test flight around the Moon. The barge ferried the core stage on a 900-mile journey from the agency’s Michoud Assembly Facility to its Kennedy Space Center.

Teams at the agency’s Michoud Assembly Facility in New Orleans are preparing the agency’s Pegasus barge to carry the SLS rocket’s core stage from the agency’s rocket factory to NASA’s Kennedy Space Center in Florida.
Team members at NASA’s Michoud Assembly Facility install pedestals aboard the Pegasus barge to hold and secure the massive core stage of NASA’s SLS (Space Launch System) rocket ahead.
NASA/Eric Bordelon

The Pegasus crew began installing the pedestals July 10. The barge, which previously was used to ferry space shuttle external tanks, was modified and refurbished to compensate for the much larger and heavier core stage for the SLS rocket. Measuring 212 feet in length and 27.6 feet in diameter, the core stage is the largest rocket stage NASA has ever built and the longest item ever shipped by a NASA barge.

Pegasus now measures 310 feet in length and 50 feet in width, with three 200-kilowatt generators on board for power. Tugboats and towing vessels moved the barge and core stage from Michoud to Kennedy, where the core stage will be integrated with other elements of the rocket and prepared for launch. Pegasus is maintained at NASA Michoud.

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.

› Back to Top

Michoud Marks Artemis II Milestone with Employee Event Featuring NASA Astronaut Victor Glover

Moon to Mars Program Deputy Associate Administrator Amit Kshatriya, left, and NASA astronaut Victor Glover, right, speak to Michoud Assembly Facility team members on July 15 as part of a Space Flight Awareness event marking Artemis II’s core stage completion. The core stage was rolled out of Michoud’s rocket factory on July 16 for transportation to NASA’s Kennedy Space Center, where it will be integrated with the Orion spacecraft and the remaining components of the SLS (Space Launch System) rocket.

Moon to Mars Program Deputy Associate Administrator Amit Kshatriya, left, and NASA astronaut Victor Glover, right, speak to Michoud Assembly Facility team members on July 15 as part of a Space Flight Awareness event marking Artemis II’s core stage completion. The core stage was rolled out of Michoud’s rocket factory on July 16 for transportation to NASA’s Kennedy Space Center, where it will be integrated with the Orion spacecraft and the remaining components of the SLS (Space Launch System) rocket. (NASA)

› Back to Top

Tawnya Laughinghouse Named Director of Marshall’s Materials and Processes Laboratory

Tawnya Plummer Laughinghouse has been named to the Senior Executive Service position of director of the Materials and Processes Laboratory in the Engineering Directorate at NASA’s Marshall Space Flight Center, effective July 7.

Tawnya Laughinghouse
Tawnya Plummer Laughinghouse has been named to the Senior Executive Service position of director of the Materials and Processes Laboratory in the Engineering Directorate at NASA’s Marshall Space Flight Center.
NASA

The Materials and Processes Laboratory provides science, technology, and engineering support in materials, processes, and products for use in space vehicle applications, including related ground facilities, test articles and support equipment. As director, Laughinghouse will oversee a workforce of science and engineering experts, as well as several research and development efforts in world-class facilities, including the National Center for Advanced Manufacturing.

Laughinghouse has more than 20 years of experience at NASA holding various technical leadership, supervisory, and programmatic positions. Since October 2018, she has been manager of the Technology Demonstration Missions (TDM) Program for the Agency, managing the implementation of a diverse portfolio of advanced space technology projects led by NASA Centers and industry partners across the nation with a goal to rapidly develop, demonstrate, and infuse revolutionary, high-payoff technologies. Under her leadership, the program helped expand the boundaries of the aerospace enterprise with the launch of 10 advanced technologies to space between 2018 and 2024. In January 2017, she was competitively selected as deputy manager of the TDM Level 2 Program Office within Marshall’s Science and Technology Office.

In 2014, she was selected as a member of the NASA Mid-Level Leadership Program. During that time, she completed a detail at NASA Headquarters supporting an Office of Chief Engineer/Office of Chief Technologist joint study on NASA’s Technology Readiness Assessment (TRA) Process.

Laughinghouse began her NASA career at Marshall in 2004 in the Materials and Processes Laboratory as lead materials engineer for the Space Shuttle Reusable Solid Rocket Motor (RSRM) Booster Separation Motor aft closure assembly. In this role, she also provided technical expertise in advanced materials for high temperature applications and thermal protection systems for solid and liquid rocket propulsion systems. Over the next 12 years, she served the lab in various capacities, including technical lead of the Ceramics & Ablatives team from 2010 to 2016, and developmental assignments such as assistant chief of the Space and Environmental Effects Branch, and chief of the Nonmetallic Materials Branch. Prior to joining Marshall, Laughinghouse spent six years in the U.S. manufacturing industry as a process chemist and product engineer.

Laughinghouse has been awarded the NASA Exceptional Achievement Medal, the NASA Exceptional Service Medal, and a host of group achievement and external awards, including the distinguished Merit Award from the National Alumnae Association of Spelman College in 2021. She has been recognized extensively in the community for her advocacy for women in STEM and mentoring.

A federally certified senior/expert program and project manager, Laughinghouse is a graduate of several leadership programs, including the Office of Personnel Management Federal Executive Institute’s Leadership for a Democratic Society. She is a May 2024 graduate of Leadership Greater Huntsville’s Connect-26 Class.

A native of Columbus, Ohio, Laughinghouse was raised in Huntsville and graduated salutatorian of her class at Sparkman High School in Toney, Alabama. After completing a NASA Summer High School Apprenticeship Research Program (SHARP) internship at Marshall, she applied for the NASA Women in Science and Engineering (WISE) dual-degree program and went on to earn a bachelor’s degree in chemistry and a bachelor’s degree in chemical engineering from Spelman College and the Georgia Institute of Technology, respectively. She also holds a Master of Science in management (concentration in management of technology) from the University of Alabama in Huntsville.

› Back to Top

Marshall Engineers Unveil Versatile, Low-cost Hybrid Engine Testbed

By Rick Smith

In June, engineers at NASA’s Marshall Space Flight Center unveiled an innovative, 11-inch hybrid rocket motor testbed.

The new hybrid testbed, which features variable flow capability and a 20-second continuous burn duration, is designed to provide a low-cost, quick-turnaround solution for conducting hot-fire tests of advanced nozzles and other rocket engine hardware, composite materials, and propellants.

A pair of NASA engineers conduct checkout testing of a new hybrid rocket engine testbed, a long, blue, cylindrical facility for testing new government and industry rocket motor hardware, materials, and propellants at NASA’s Marshall Space Flight Center.
Paul Dumbacher, right, lead test engineer for the Propulsion Test Branch at NASA’s Marshall Space Flight Center, confers with Meredith Patterson, solid propulsion systems engineer, as they install the 11-inch hybrid rocket motor testbed into its cradle in Marshall’s East Test Stand.
NASA/Charles Beason

Solid rocket propulsion remains a competitive, reliable technology for various compact and heavy-lift rockets as well as in-space missions, offering low propulsion element mass, high energy density, resilience in extreme environments, and reliable performance.

“It’s time consuming and costly to put a new solid rocket motor through its paces – identifying how materials perform in extreme temperatures and under severe structural and dynamic loads,” said Benjamin Davis, branch chief of the Solid Propulsion and Pyrotechnic Devices Branch of Marshall’s Engineering Directorate. “In today’s fast-paced, competitive environment, we wanted to find a way to condense that schedule. The hybrid testbed offers an exciting, low-cost solution.”

Initiated in 2020, the project stemmed from NASA’s work to develop new composite materials, additively manufactured – or 3D-printed – nozzles, and other components with proven benefits across the spacefaring spectrum, from rockets to planetary landers.

After analyzing future industry requirements, and with feedback from NASA’s aerospace partners, the Marshall team recognized that their existing 24-inch rocket motor testbed – a subscale version of the Space Launch System booster – could prove too costly for small startups. Additionally, conventional, six-inch test motors limited flexible configuration and required multiple tests to achieve all customer goals. The team realized what industry needed most was an efficient, versatile third option.

“The 11-inch hybrid motor testbed offers the instrumentation, configurability, and cost-efficiency our government, industry, and academic partners need,” said Chloe Bower, subscale solid rocket motor manufacturing lead at Marshall. “It can accomplish multiple test objectives simultaneously – including different nozzle configurations, new instrumentation or internal insulation, and various propellants or flight environments.”

Three female NASA engineers conduct post-test analysis of disassembled, cylindrical components of a new, hybrid rocket motor testbed at NASA’s Marshall Space Flight Center.
Assessing components of the 11-inch hybrid rocket motor testbed in the wake of successful testing are, from left, Chloe Bower, Marshall’s subscale solid rocket motor manufacturing lead; Jacobs manufacturing engineer Shelby Westrich; and Precious Mitchell, Marshall’s solid propulsion design lead.
NASA/Benjamin Davis

“That quicker pace can reduce test time from months to weeks or days,” said Precious Mitchell, solid propulsion design lead for the project.

Another feature of great interest is the on/off switch. “That’s one of the big advantages to a hybrid testbed,” Mitchell said. “With a solid propulsion system, once it’s ignited, it will burn until the fuel is spent. But because there’s no oxidizer in hybrid fuel, we can simply turn it off at any point if we see anomalies or need to fine-tune a test element, yielding more accurate test results that precisely meet customer needs.”

The team expects to deliver to NASA leadership final test data later this summer. For now, Davis congratulates the Marshall propulsion designers, analysts, chemists, materials engineers, safety personnel, and test engineers who collaborated on the new testbed.

“We’re not just supporting the aerospace industry in broad terms,” he said. “We’re also giving young NASA engineers a chance to get their hands dirty in a practical test environment solving problems. This work helps educate new generations who will carry on NASA’s mission in the decades to come.”

For nearly 65 years, Marshall teams have led development of the U.S. space program’s most powerful rocket engines and spacecraft, from the Apollo-era Saturn V rocket and the space shuttle to today’s cutting-edge propulsion systems, including NASA’s newest rocket, the Space Launch System. NASA technology testbeds designed and built by Marshall engineers and their partners have shaped the reliable technologies of spaceflight and continue to enable discovery, testing, and certification of advanced rocket engine materials and manufacturing techniques. 

Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

NASA Honors 25 Years of Chandra at July National Space Club Breakfast

NASA Ships Moon Rocket Stage Ahead of First Crewed Artemis Flight https://www.nasa.gov/news-release/nasa-ships-moon-rocket-stage-ahead-of-first-crewed-artemis-flight/ NASA Marshall Engineers Unveil Versatile, Low-cost Hybrid Engine Testbed https://www.nasa.gov/centers-and-facilities/marshall/nasa-marshall-engineers-unveil-versatile-low-cost-hybrid-engine-testbed/ Take a Summer Cosmic Road Trip With NASA’s Chandra and Webb https://www.nasa.gov/image-article/take-a-summer-cosmic-road-trip-with-nasas-chandra-and-webb/ 55 Years Ago: Apollo 11’s One Small Step, One Giant Leap https://www.nasa.gov/history/55-years-ago-apollo-11s-one-small-step-one-giant-leap/ Two Years Since Webb’s First Images: Celebrating with the Penguin and the Egg Andrew Schnell, acting manager of the Chandra X-ray Observatory at NASA’s Marshall Space Flight Center, honored 25 years of the project’s mission success at National Space Club – Huntsville’s breakfast event on July 16.

Andrew Schnell, acting manager of the Chandra X-ray Observatory at NASA’s Marshall Space Flight Center, honored 25 years of the project’s mission success at National Space Club – Huntsville’s breakfast event on July 16.

Schnell provided insight into Chandra’s history – sharing photos and stories from the project’s initial development, launch, first light images, and some of the most iconic images captured by the telescope to date.

Chandra launched on STS-93 Shuttle Columbia July 23, 1999. Originally designed as a five-year mission, the telescope’s prolonged success is a testament to the agency’s engineering capabilities.

“One of the things that excites me about working with Chandra is that are we not only changing our understanding of the universe today, but the data we collect now may help answer questions astrophysicists haven’t even asked yet.” Schnell said. “One day, an astrophysicist – maybe one that hasn’t been born yet – will have a theory, and our data will be there to help them test that theory.” (Photo Credit: Face to Face Marketing)

› Back to Top

Take a Summer Cosmic Road Trip with NASA’s Chandra and Webb

It’s time to take a cosmic road trip using light as the highway and visit four stunning destinations across space. The vehicles for this space get-away are NASA’s Chandra X-ray Observatory and James Webb Space Telescope.

The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth. Rho Ophiuchi is a cloud complex filled with gas and stars of different sizes and ages. Being one of the closest star-forming regions, Rho Ophiuchi is a great place for astronomers to study stars. In this image, X-rays from Chandra are purple revealing infant stars that violently flare and produce X-rays. Infrared data from Webb are red, yellow, cyan, light blue and darker blue and provide views of the spectacular regions of gas and dust.

Rho Ophiuchi, a cloud complex filled with gas, and dotted with stars. The murky green and gold cloud resembles a ghostly head in profile, swooping down from the upper left, trailing tendrils of hair. Cutting across the bottom edge and lower righthand corner of the image is a long, narrow, brick red cloud which resembles the ember of a stick pulled from a fire. Several large white stars dot the image. Many are surrounded by glowing neon purple rings, and gleam with diffraction spikes.
The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth.
X-ray: NASA/CXC/MIT/C. Canizares; IR: NASA/ESA/CSA/STScI/K. Pontoppidan; Image Processing: NASA/ESA/STScI/Alyssa Pagan, NASA/CXC/SAO/L. Frattare and J. Major

The next destination is the Orion Nebula. Still located in the Milky Way galaxy, this region is a little bit farther from our home planet at about 1,500 light-years away. If you look just below the middle of the three stars that make up the “belt” in the constellation of Orion, you may be able to see this nebula through a small telescope. With Chandra and Webb, however, we get to see so much more. Chandra reveals young stars that glow brightly in X-rays, colored in red, green, and blue, while Webb shows the gas and dust in darker red that will help build the next generation of stars here.

chandrawebb3-m42.jpg?w=2048
The Orion Nebula.
X-ray: NASA/CXC/Penn State/E.Fei

It’s time to leave our galaxy and visit another. Like the Milky Way, NGC 3627 is a spiral galaxy that we see at a slight angle. NGC 3627 is known as a “barred” spiral galaxy because of the rectangular shape of its central region. From our vantage point, we can also see two distinct spiral arms that appear as arcs. X-rays from Chandra in purple show evidence for a supermassive black hole in its center while Webb finds the dust, gas, and stars throughout the galaxy in red, green, and blue. This image also contains optical data from the Hubble Space Telescope in red, green, and blue.

The galaxy NGC 3627 appears pitched at an oblique angle, tilted from our upper left down to our lower right. Much of its face is angled toward us, making its spiral arms, composed of red and purple dots, easily identifiable. Several bright white dots ringed with neon purple speckle the galaxy. At the galaxy’s core, where the spiral arms converge, a large white and purple glow identified by Chandra provides evidence of a supermassive black hole.
Spiral galaxy NGC 3627.
X-ray: NASA/CXC/SAO; Optical: NASA/ESO/STScI, ESO/WFI; Infrared: NASA/ESA/CSA/STScI/JWST; Image Processing:/NASA/CXC/SAO/J. Major

Our final landing place on this trip is the farthest and the biggest. MACS J0416 is a galaxy cluster, which are among the largest objects in the Universe held together by gravity. Galaxy clusters like this can contain hundreds or even thousands of individual galaxies all immersed in massive amounts of superheated gas that Chandra can detect. In this view, Chandra’s X-rays in purple show this reservoir of hot gas while Hubble and Webb pick up the individual galaxies in red, green, and blue.

Here is the distant galaxy cluster known as MACS J0416. The blackness of space is packed with glowing dots and tiny shapes, in whites, purples, oranges, golds, and reds, each a distinct galaxy. Upon close inspection (and with a great deal of zooming in!) the spiraling arms of some of the seemingly tiny galaxies are revealed in this highly detailed image. Gently arched across the middle of the frame is a soft band of purple; a reservoir of superheated gas detected by Chandra.
ACS J0416 galaxy cluster.
X-ray: NASA/CXC/SAO/G. Ogrean et al.; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI/Jose M. Diego (IFCA), Jordan C. J. D’Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri)

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 13 min read
      The Earth Observer Editor’s Corner: July–September 2025
      NOTE TO READERS: After more than three decades associated with or directly employed by NASA, Steve Platnick [GSFC—Deputy Director for Atmospheres, Earth Sciences Division] stepped down effective August 8, 2025. Steve began his civil servant career at GSFC in 2002, but his GSFC association went back to 1993, first as a contractor and then as one of the earliest employees of the Joint Center for Earth Systems Technology (JCET). During his time at NASA, Steve played an integral role in the sustainability and advancement of NASA’s Earth Observing System platforms and data. He was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team, where he helped advance several key components of the MODIS instrument. He was also the NASA Lead/co-Lead for the Suomi National Polar-orbiting Partnership (Suomi NPP), Atmosphere Discipline from 2012–2020 where he focused on operational cloud optical and microphysical products.
      In 2008, Steve became the Earth Observing System (EOS) Senior Project Scientist. In this role, he led the EOS Project Science Office that supported airborne sensors, ground networks, and calibration labs. The Kudos article titled “Steve Platnick Steps Down from NASA After 34 Years of Service” includes a more detailed account of Steve’s career and includes a list of awards he has received.
      Steve’s departure leaves a vacancy in the author’s chair for “The Editor’s Corner” – another role Steve filled as EOS Senior Project Scientist. Barry Lefer [NASA Headquarters—Associate Director of Research, Earth Science Division] graciously agreed to serve as guest author of the editorial in the current compilation. I want to thank Steve for all his support for The Earth Observer over the years and thank Barry for stepping in as the author of “The Editor’s Corner” for the time being.
      –Alan Ward, Executive Editor, The Earth Observer
      I begin this editorial with news of a successful Earth science launch. At 5:40 PM Indian Standard Time (IST), or 8:10 AM Eastern Daylight Time (EDT), on July 30, 2025, the joint NASA–Indian Space Research Organization (ISRO) Synthetic Aperture Radar, or NISAR, mission launched from the Satish Dhawan Space Centre on India’s southeastern coast aboard an ISRO Geosynchronous Satellite Launch Vehicle (GSLV) rocket 5. The ISRO ground controllers began communicating with NISAR about 20 minutes after launch, at just after 8:29 AM EDT, and confirmed it is operating as expected.
      NISAR will use two different radar frequencies (L-band SAR and S-band SAR) to penetrate clouds and forest canopies. Including L-band and S-band radars on one satellite is an evolution in SAR airborne and space-based missions that, for NASA, started in 1978 with the launch of Seasat. In 2012, ISRO began launching SAR missions starting with Radar Imaging Satellite (RISAT-1), followed by RISAT-1A in 2022, to support a wide range of applications in India.
      Combining the data from these two radars will allow researchers to systematically and globally map Earth – measuring changes of our planet’s surface down to a centimeter (~0.4 inches). With this detailed view, researchers will have an unprecedented ability to observe and measure complex processes from ecosystem disturbances to natural hazards to groundwater issues. All NISAR science data will be freely available and open to the public.
      Following the successful launch, NISAR entered an approximately 90-day commissioning phase to test out systems before science operations begin. A key milestone of that phase was the completion of the deployment of the 39-ft (12-m) radar antenna reflector on August 15 – see Video. The process began on August 9, when the satellite’s boom, which had been tucked close to its main body, started unfolding one joint at a time until it was fully extended about four days later. The reflector assembly is mounted at the end of the boom. On August 15, small explosive bolts that held the reflector assembly in place were fired, enabling the antenna to begin a process called the bloom – its unfurling by the release of tension stored in its flexible frame while stowed like an umbrella. Subsequent activation of motors and cables pulled the antenna into its final, locked position.
      Video: NISAR mission team members at NASA JPL, working with colleagues in India, executed the deployment of the satellite’s radar antenna reflector on Aug. 15, 2025. About 39 feet (12 meters) in diameter, the reflector directs microwave pulses from NISAR’s two radars toward Earth and receives the return signals. Credit: NASA/JPL-Caltech The radar reflector will be used to direct and receive microwave signals from the two radars. By interpreting the differences between the L-band and S-band measurements, researchers will be able to discern characteristics about the surface below. As NISAR passes over the same locations twice every 12 days, scientists can evaluate how those characteristics have changed over time to reveal new insights about Earth’s dynamic surfaces.
      With the radar reflector now in full bloom, scientists have turned their attention to tuning and testing the radar and preparing NISAR for Science Operations, which are anticipated to start around the beginning of November. Congratulations to the NISAR team on a successful launch and deployment of the radar reflector. Along with the science community, I am excited to see what new discoveries will result from the data collected by the first Earth System Observatory mission.
      Turning now to news from active missions, the Soil Moisture Active Passive (SMAP) mission has collected over 10 years of global L-band radiometry observations that have resulted in surface soil moisture, vegetation optical depth (VOD), and freeze/thaw state estimates that outperform past and current products. A decade of SMAP soil moisture observations has led to scientific achievements, including quantifying the linkages of the three main metabolic cycles (e.g., carbon, water, and energy) on land. The data have been widely used by the Earth system science community to improve drought assessments and flood prediction as well as the accuracy of numerical weather prediction models.
      SMAP’s Early Adopter program has helped connect SMAP data with people and organizations that need it. The program has increased the awareness of SMAP mission products, broadened the user community, increased collaboration with potential users, improved knowledge of SMAP data product capabilities, and expedited the distribution and uses of mission products for a suite of 16 products available. For example, the L-band VOD, which is related to water content in vegetation, is being used to better understand water exchanges in the soil–vegetation–atmosphere continuum.
      The SMAP Active–Passive (AP) algorithm – based on data from SMAP and the European Copernicus Program Sentinel-1 C-band synthetic aperture radar (SAR) – will be adapted to work with L-band data from the newly launched NISAR mission. The result will be estimates of global soil moisture at a spatial resolution of 1 km (0.62 mi) or better approximately once per week.
      In addition, the data collected during the SMAP mission would be continued and further enhanced by the European Union’s Copernicus Imaging Microwave Radiometer (CIMR) mission if it launches. This proposed multichannel microwave radiometry observatory includes L-band and four other microwave channels sharing a large mesh reflector – like the one used with SMAP. The plan calls for CIMR to follow a similar approach as SMAP for RFI detection and meet the instrument thermal noise and data latency of SMAP for next-mission desired characteristics.
      To learn more about what SMAP has accomplished see “A Decade of Global Water Cycle Monitoring: NASA Soil Moisture Active Passive Mission.”
      NASA’s Orbiting Carbon Observatory-2 (OCO-2) has been the “gold standard” for atmospheric carbon dioxide (CO2) observations from space for over a decade. The data returned from OCO-2 provide insights into plant health, forest management, forecasting crop yields, fire-risk models, and anticipating droughts. 
      OCO-3, constructed from spare parts left after OCO-2, was launched to the International Space Station (ISS) in 2019, where it has operated for over five years. OCO-3 extends the global CO2 measurement record while adding new capabilities made possible by being on ISS (e.g., detailed views of urban and tropical regions). 
      The overarching OCO mission hasn’t just about been about data and hardware. Although both those elements are parts of the story, the human stories woven through the mission’s successes and setbacks are really what holds the mission together. The feature, “A Tapestry of Tales: 10th Anniversary Reflections from NASA’s OCO-2 Mission,” sheds light on some of these personal stories from the OCO-2 and OCO-3 missions.
      The individual tales contained in this article reveal the grit and determination behind the scenes of the success of OCO-2 and OCO-3, from the anxiety and excitement surrounding the launch of OCO-2, to moments of fieldwork in the Nevada desert, to internships where wildfire responders turned to OCO-2 data to improve fire-risk models. Taken together, these stories form a “tapestry” that reveals how the OCO-2 and OCO-3 missions continue to illuminate the dynamics of Earth’s atmosphere – one breath at a time.
      These personal perspectives underscore that science is not just numbers; it’s people pushing boundaries, navigating failure, and inspiring ways to make our planet safer and healthier. In a time such as this, this is an important reminder.
      The joint NASA–U.S. Geological Survey (USGS) Landsat program has been a cornerstone of Earth observation for over 50 years. On July 13, Landsat 9 collected its millionth image: a stunning shot of the Arctic National Wildlife Refuge in Alaska – see Figure. Landsat 9, the most recent satellite in the Landsat series, orbits Earth alongside Landsat 8. Together, these satellites collect invaluable data about Earth’s changing land surface every eight days.
      Figure: This Landsat 9 image showing the Beaufort Sea shoreline off Alaska and Canada is just one of the scenes captured and processed on July 13, 2025— the same day the USGS EROS archive reached a milestone of one million Landsat 9 Level-1 products. This false color image was made with bands 6, 5, and 4 from the Operational Land Imager. This remote area allows the pristine wilderness environment to support a diverse wildlife and unique ecosystem that includes various species of mammals, birds, and fish. Landsat Level-1 products from Landsat 1 through Landsat 9 can be downloaded at no charge from a number of systems – visit the Landsat Data Access webpage to learn more.  Credit: Public Domain After collecting more than 3.3 million images over the course of more than 26 years in orbit, Landsat 7 was decommissioned on June 4, 2025. A YouTube video released at the time of decommissioning provides a concise visual summary of the Landsat 7 mission’s achievements – and the technical challenges overcome. In addition, The Earth Observer did a feature for the 20th anniversary of Landsat 7 in the July–August 2019 issue, called “The Living Legacy of Landsat 7: Still Going Strong After 20 Years in Orbit” [Volume 31, Issue 4, pp. 4–14] that is a useful resource to learn more about the history and achievements (through 20 years) of the mission.
      One of the strengths of the Landsat program is its potential for data integration with other satellites. The Harmonized Landsat and Sentinel-2 (HLS) product exemplifies this collaborative approach by combining data from Landsat 8 and 9 with data from the European Space Agency’s Copernicus Sentinel-2 A, B, and C missions. Whereas Landsat alone has a repeat time of eight days (i.e., combining Landsat 8 and 9 data); the combined HLS dataset provides imagery for the same location on Earth every 1.6 days – enabling researchers to monitor short-term changes in Earth’s land surface much more effectively than using Landsat or Sentinel-2 data alone.
      HLS became one of the most-downloaded NASA data products in fiscal year 2024, with continued growth on the horizon. In February 2025, the program expanded with nine new vegetation indices based on HLS data, with historical processing back to 2013 scheduled for completion by early 2026. Low-latency HLS products will also be available in late 2026. For the full story of how HLS came to be – see the feature: “Harmonized Landsat and Sentinel-2: Collaboration Drives Innovation.”
      Following a 13-month hibernation, the Global Ecosystem Dynamics Investigation (GEDI) mission was reinstalled to its original location aboard the ISS and resumed operations on April 22, 2024. Since this storage period, GEDI’s lasers have been operating nominally and the mission has continued to produce high-quality observations of the Earth’s three-dimensional structure, amassing 33 billion land surface returns as of November 27, 2024.
      The mission team has been actively processing and releasing post-storage data to the public, with Version 2.1 – GEDI L1B, L2A, L2B, and L4A data products, which include data through November 2024, all available for download. The new L4C footprint-level Waveform Structural Complexity Index (WSCI) product using pre-storage data has also been released. Looking ahead, the team is preparing Version 3.0 (V3) of all data products, which will incorporate post-storage data while improving quality filtering, geolocation accuracy, and algorithm performance.
      The 2025 GEDI Science Team Meeting (STM) brought together the mission science team, competed science team, representatives from the distributed active archive centers (DAACs), collaborators, stakeholders, and data users. Notably, it marked the first in-person gathering of the second competed science team, who shared updates on their research projects. The STM held an important space for brainstorming, knowledge-sharing, and discussion as the GEDI mission continues to flourish in its second epoch. To learn more, see “Summary of the 2025 GEDI Science Team Meeting.”
      Shifting focus to the boreal forests of North America, the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is now in its final year, marking the end of a decade-long scientific endeavor that has transformed our understanding of environmental change in Alaska and western Canada. This ambitious campaign, funded primarily by NASA’s Terrestrial Ecology Program, has successfully progressed through three distinct phases: ecosystem dynamics (2015–2018), ecosystem services (2017–2022), and the current analysis and synthesis phase (2023–present).
      As ABoVE approaches its conclusion, the program has grown to encompass 67 NASA-funded projects with over 1000 participating researchers – a testament to the collaborative scale required to address complex Arctic–boreal ecosystem questions. The program’s integrated approach, combining field research, airborne campaigns, and satellite remote sensing, has generated unprecedented insights into how environmental changes in these northern regions affect both vulnerable ecosystems and society.
      The recent 11th – and final – ABoVE Science Team Meeting was an opportunity to showcase the program’s evolution from data collection to synthesis, highlighting successful community engagement initiatives, cutting-edge research on carbon dynamics and ecosystem responses, and innovative science communication strategies that have made this complex research accessible to diverse audiences. With synthesis activities now underway, ABoVE is positioned to deliver comprehensive insights that will inform Arctic and boreal research for years to come. To learn more, see “Summary of the 11th and Final ABoVE Science Team Meeting.”
      Last but certainly not least, I want to both recognize and congratulate Compton J. Tucker [GSFC—Senior Researcher]. Compton retired from NASA in March 2025 after 48 years of public service, and then in April, was among 149 newly elected members to the National Academy of Sciences (NAS) – which is one of the highest honors in American science. This recognition from NAS brings Compton’s career full circle. He came to GSFC as a NAS postdoc before joining NASA as a civil servant. Compton is a pioneer in the field of satellite-based environmental analysis, using data from various Landsat missions and from the National Oceanographic and Atmospheric Administration’s (NOAA) Advanced Very High Resolution Radiometer (AVHRR) instrument. His research has focused on global photosynthesis on land, determining land cover, monitoring droughts and food security, and evaluating ecologically coupled disease outbreaks. The Kudos, “Compton J. Tucker Retires from NASA and is Named NAS Fellow,” provides more details about Compton’s research achievements and all of the other scientific awards and honors received throughout his career.
      Barry Lefer
      Associate Director of Research, Earth Science Division
      Share








      Details
      Last Updated Sep 10, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Webb Timeline Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Science Explainers Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Glittering Glimpse of Star Birth From NASA’s Webb Telescope
      Webb captured this sparkling scene of star birth in Pismis 24. Full image and caption below. Credits:
      Image: NASA, ESA, CSA, STScI; Image Processing: A. Pagan (STScI) This is a sparkling scene of star birth captured by NASA’s James Webb Space Telescope. What appears to be a craggy, starlit mountaintop kissed by wispy clouds is actually a cosmic dust-scape being eaten away by the blistering winds and radiation of nearby, massive, infant stars.
      Called Pismis 24, this young star cluster resides in the core of the nearby Lobster Nebula, approximately 5,500 light-years from Earth in the constellation Scorpius. Home to a vibrant stellar nursery and one of the closest sites of massive star birth, Pismis 24 provides rare insight into large and massive stars. Its proximity makes this region one of the best places to explore the properties of hot young stars and how they evolve.
      At the heart of this glittering cluster is the brilliant Pismis 24-1. It is at the center of a clump of stars above the jagged orange peaks, and the tallest spire is pointing directly toward it. Pismis 24-1 appears as a gigantic single star, and it was once thought to be the most massive known star. Scientists have since learned that it is composed of at least two stars, though they cannot be resolved in this image. At 74 and 66 solar masses, respectively, the two known stars are still among the most massive and luminous stars ever seen.
      Image A: Pismis 24 (NIRCam Image)
      Webb captured this sparkling scene of star birth in Pismis 24, a young star cluster about 5,500 light-years from Earth in the constellation Scorpius. This region is one of the best places to explore the properties of hot young stars and how they evolve. Image: NASA, ESA, CSA, STScI; Image Processing: A. Pagan (STScI) Captured in infrared light by Webb’s NIRCam (Near-Infrared Camera), this image reveals thousands of jewel-like stars of varying sizes and colors. The largest and most brilliant ones with the six-point diffraction spikes are the most massive stars in the cluster. Hundreds to thousands of smaller members of the cluster appear as white, yellow, and red, depending on their stellar type and the amount of dust enshrouding them. Webb also shows us tens of thousands of stars behind the cluster that are part of the Milky Way galaxy.
      Super-hot, infant stars –some almost 8 times the temperature of the Sun – blast out scorching radiation and punishing winds that are sculpting a cavity into the wall of the star-forming nebula. That nebula extends far beyond NIRCam’s field of view. Only small portions of it are visible at the bottom and top right of the image. Streamers of hot, ionized gas flow off the ridges of the nebula, and wispy veils of gas and dust, illuminated by starlight, float around its towering peaks.
      Dramatic spires jut from the glowing wall of gas, resisting the relentless radiation and winds. They are like fingers pointing toward the hot, young stars that have sculpted them. The fierce forces shaping and compressing these spires cause new stars to form within them. The tallest spire spans about 5.4 light-years from its tip to the bottom of the image. More than 200 of our solar systems out to Neptune’s orbit could fit into the width its tip, which is 0.14 lightyears.
      In this image, the color cyan indicates hot or ionized hydrogen gas being heated up by the massive young stars. Dust molecules similar to smoke here on Earth are represented in orange. Red signifies cooler, denser molecular hydrogen. The darker the red, the denser the gas. Black denotes the densest gas, which is not emitting light. The wispy white features are dust and gas that are scattering starlight.
      Video A: Expedition to Star Cluster Pismis 24
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      This scientific visualization takes viewers on a journey to a glittering young star cluster called Pismis 24. NASA’s James Webb Space Telescope captured this fantastical scene in the heart of the Lobster Nebula, approximately 5,500 light-years from Earth. Video: NASA, ESA, CSA, STScI, Leah Hustak (STScI), Christian Nieves (STScI); Image Processing: Alyssa Pagan (STScI); Script Writer: Frank Summers (STScI); Narration: Frank Summers (STScI); Music: Christian Nieves (STScI); Audio: Danielle Kirshenblat (STScI); Producer: Greg Bacon (STScI); Acknowledgment: VISTA Video B: Zoom to Pismis 24
      This zoom-in video shows the location of the young star cluster Pismis 24 on the sky. It begins with a ground-based photo of the constellation Scorpius by the late astrophotographer Akira Fujii. The sequence closes in on the Lobster Nebula, using views from the Digitized Sky Survey. As the video homes in on a select portion, it fades to a VISTA image in infrared light. The zoom continues in to the region around Pismis 24, where it transitions to the stunning image captured by NASA’s James Webb Space Telescope in near-infrared light.
      Video: NASA, ESA, CSA, STScI, Alyssa Pagan (STScI); Narration: Frank Summers (STScI); Script Writer: Frank Summers (STScI); Music: Christian Nieves (STScI); Audio: Danielle Kirshenblat (STScI); Producer: Greg Bacon (STScI); Acknowledgment: VISTA, Akira Fujii, DSS The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Ann Jenkins – jenkins@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about Hubble’s view of Pismis 24
      Listen to a sonification of Hubble’s view of Pismis 24
      Animation Video: “How Dense Pillars Form in Molecular Clouds”
      Read more: Webb’s Star Formation Discoveries
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Sep 04, 2025 Related Terms
      James Webb Space Telescope (JWST) View the full article
    • By NASA
      NASA/Nichole Ayers On July 26, 2025, NASA astronaut Nichole Ayers took this long-exposure photograph – taken over 31 minutes from a window inside the International Space Station’s Kibo laboratory module – capturing the circular arcs of star trails.
      In its third decade of continuous human presence, the space station has a far-reaching impact as a microgravity lab hosting technology, demonstrations, and scientific investigations from a range of fields. The research done on the orbiting laboratory will inform long-duration missions like Artemis and future human expeditions to Mars.
      Image credit: NASA/Nichole Ayers
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Homes in on Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.
      This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.
      The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.
      The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.
      This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.
      The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.
      Explore More:

      Learn more about why astronomers study light in detail


      Explore the different wavelengths of light Hubble sees


      Explore the Night Sky: Messier 96

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Aug 29, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      This graphic features data from NASA’s Chandra X-ray Observatory of the Cassiopeia A (Cas A) supernova remnant that reveals that the star’s interior violently rearranged itself mere hours before it exploded. The main panel of this graphic is Chandra data that shows the location of different elements in the remains of the explosion: silicon (represented in red), sulfur (yellow), calcium (green) and iron (purple). The blue color reveals the highest-energy X-ray emission detected by Chandra in Cas A and an expanding blast wave. The inset reveals regions with wide ranges of relative abundances of silicon and neon. This data, plus computer modeling, reveal new insight into how massive stars like Cas A end their lives.X-ray: NASA/CXC/Meiji Univ./T. Sato et al.; Image Processing: NASA/CXC/SAO/N. Wolk The inside of a star turned on itself before it spectacularly exploded, according to a new study from NASA’s Chandra X-ray Observatory. Today, this shattered star, known as the Cassiopeia A supernova remnant, is one of the best-known, well-studied objects in the sky.
      Over three hundred years ago, however, it was a giant star on the brink of self-destruction. The new Chandra study reveals that just hours before it exploded, the star’s interior violently rearranged itself. This last-minute shuffling of its stellar belly has profound implications for understanding how massive stars explode and how their remains behave afterwards.
      Cassiopeia A (Cas A for short) was one of the first objects the telescope looked at after its launch in 1999, and astronomers have repeatedly returned to observe it.
      “It seems like each time we closely look at Chandra data of Cas A, we learn something new and exciting,” said Toshiki Sato of Meiji University in Japan who led the study. “Now we’ve taken that invaluable X-ray data, combined it with powerful computer models, and found something extraordinary.”
      As massive stars age, increasingly heavy elements form in their interiors by nuclear reactions, creating onion-like layers of different elements. Their outer layer is mostly made of hydrogen, followed by layers of helium, carbon and progressively heavier elements – extending all the way down to the center of the star. 
      Once iron starts forming in the core of the star, the game changes. As soon as the iron core grows beyond a certain mass (about 1.4 times the mass of the Sun), it can no longer support its own weight and collapses. The outer part of the star falls onto the collapsing core, and rebounds as a core-collapse supernova.
      The new research with Chandra data reveals a change that happened deep within the star at the very last moments of its life. After more than a million years, Cas A underwent major changes in its final hours before exploding.
      “Our research shows that just before the star in Cas A collapsed, part of an inner layer with large amounts of silicon traveled outwards and broke into a neighboring layer with lots of neon,” said co-author Kai Matsunaga of Kyoto University in Japan. “This is a violent event where the barrier between these two layers disappears.”
      This upheaval not only caused material rich in silicon to travel outwards; it also forced material rich in neon to travel inwards. The team found clear traces of these outward silicon flows and inward neon flows in the remains of Cas A’s supernova remnant. Small regions rich in silicon but poor in neon are located near regions rich in neon and poor in silicon. 
      The survival of these regions not only provides critical evidence for the star’s upheaval, but also shows that complete mixing of the silicon and neon with other elements did not occur immediately before or after the explosion. This lack of mixing is predicted by detailed computer models of massive stars near the ends of their lives.
      There are several significant implications for this inner turmoil inside of the doomed star. First, it may directly explain the lopsided rather than symmetrical shape of the Cas A remnant in three dimensions. Second, a lopsided explosion and debris field may have given a powerful kick to the remaining core of the star, now a neutron star, explaining the high observed speed of this object.
      Finally, the strong turbulent flows created by the star’s internal changes may have promoted the development of the supernova blast wave, facilitating the star’s explosion.
      “Perhaps the most important effect of this change in the star’s structure is that it may have helped trigger the explosion itself,” said co-author Hiroyuki Uchida, also of Kyoto University. “Such final internal activity of a star may change its fate—whether it will shine as a supernova or not.”
      These results have been published in the latest issue of The Astrophysical Journal and are available online.
      To learn more about Chandra, visit:
      https://science.nasa.gov/chandra
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a composite image of Cassiopeia A, a donut-shaped supernova remnant located about 11,000 light-years from Earth. Included in the image is an inset closeup, which highlights a region with relative abundances of silicon and neon.
      Over three hundred years ago, Cassiopeia A, or Cas A, was a star on the brink of self-destruction. In composition it resembled an onion with layers rich in different elements such as hydrogen, helium, carbon, silicon, sulfur, calcium, and neon, wrapped around an iron core. When that iron core grew beyond a certain mass, the star could no longer support its own weight. The outer layers fell into the collapsing core, then rebounded as a supernova. This explosion created the donut-like shape shown in the composite image. The shape is somewhat irregular, with the thinner quadrant of the donut to the upper left of the off-center hole.
      In the body of the donut, the remains of the star’s elements create a mottled cloud of colors, marbled with red and blue veins. Here, sulfur is represented by yellow, calcium by green, and iron by purple. The red veins are silicon, and the blue veins, which also line the outer edge of the donut-shape, are the highest energy X-rays detected by Chandra and show the explosion’s blast wave.
      The inset uses a different color code and highlights a colorful, mottled region at the thinner, upper left quadrant of Cas A. Here, rich pockets of silicon and neon are identified in the red and blue veins, respectively. New evidence from Chandra indicates that in the hours before the star’s collapse, part of a silicon-rich layer traveled outwards, and broke into a neighboring neon-rich layer. This violent breakdown of layers created strong turbulent flows and may have promoted the development of the supernova’s blast wave, facilitating the star’s explosion. Additionally, upheaval in the interior of the star may have produced a lopsided explosion, resulting in the irregular shape, with an off-center hole (and a thinner bite of donut!) at our upper left.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Aug 28, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants Supernovae The Universe Explore More
      6 min read Meet NASA’s Artemis II Moon Mission Masterminds
      Article 22 hours ago 4 min read Washington State Student Wins 2025 NASA Art Contest
      Article 3 days ago 5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
      Scientists have devised a new method for mapping the spottiness of distant stars by using…
      Article 3 days ago View the full article
  • Check out these Videos

×
×
  • Create New...