Jump to content

Tech Today: NASA’s Moonshot Launched Commercial Fuel Cell Industry 


Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A large fuel cell housed in a grey shipping container-like enclosure
HyAxiom’s 440-kilowatt phosphoric acid fuel cell is now its flagship product, and it still builds on technical know-how developed under the Apollo and space shuttle programs.
Credit: HyAxiom Inc.

NASA’s investment in fuel cells dates to the 1960s when most of the world was still reliant on fossil fuels. A fuel cell generates electricity and heat when hydrogen and oxygen bond through an electrolyte. Because its only by-product is water, it’s an environmentally friendly power source. 

The agency’s interest in fuel cells came when NASA needed to fuel missions to the Moon. Engineers at NASA’s Johnson Space Center in Houston looked to fuel cells because they could provide more energy per pound than batteries could over the course of a long mission. At that time, fuel cells were just a concept that had never been put to practical use. 

The Apollo spacecraft orbiting the Moon
NASA funded development of the first practical fuel cells because they were necessary to cut weight from the Apollo spacecraft for Moon missions. Three fuel cells in the Apollo service module provided electricity for the capsule containing the astronauts. The division of Pratt & Whitney that made the fuel cells later became UTC Power, now a subsidiary of Doosan Group known as HyAxiom Inc.
Credit: NASA

NASA funded three companies, including a portion of Pratt & Whitney, to develop prototypes. For Apollo mission fuel cells, NASA selected the Pratt & Whitney group, which soon became UTC Power, as the supplier of all the space shuttle fuel cells. With the agency funding and shaping its technology development, UTC Power eventually started offering commercial fuel cells. The company is now known as HyAxiom Inc. and operates from the same plant in South Windsor, Connecticut, that produced fuel cells for the agency. 

The company released its first commercial fuel cell in the mid-1990s and introduced its current product line about a decade later. 

“The models they built for these products we use today had a lot of the electrochemistry understanding from the space program,” said Sridhar Kanuri, HyAxiom’s chief technology officer. 

HyAxiom now produces around 120 units per year but expects to ramp up as government investments in fuel cells increase. The U.S. government plans to use fuel cells to store energy from renewable sources. 

Today’s commercial fuel cell companies received much of their knowledge base from NASA. John Scott, NASA’s principal technologist for power and energy storage said, “All these companies trace their intellectual property heritage, their corporate heritage, even the generations of personnel to those companies NASA funded back in the early 1960s.” 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA Tech to Use Moonlight to Enhance Measurements from Space
      NASA's Arcstone instrument will be the first mission exclusively dedicated to measuring moonlight, or lunar reflectance, from space as a way to calibrate and improve science data collected by Earth-viewing, in-orbit instruments.  Credits: Blue Canyon Technologies NASA will soon launch a one-of-a-kind instrument, called Arcstone, to improve the quality of data from Earth-viewing sensors in orbit. In this technology demonstration, the mission will measure sunlight reflected from the Moon— a technique called lunar calibration. Such measurements of lunar spectral reflectance can ultimately be used to set a high-accuracy, universal standard for use across the international scientific community and commercial space industry.  
      To ensure satellite and airborne sensors are working properly, researchers calibrate them by comparing the sensor measurements against a known standard measurement. Arcstone will be the first mission exclusively dedicated to measuring lunar reflectance from space as a way to calibrate and improve science data collected by Earth-viewing, in-orbit instruments. 
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This visualization demonstrates how Arcstone will operate while in orbit measuring lunar reflectance to establish a new calibration standard for future Earth-observing remote sensors. Arcstone’s satellite platform was manufactured by Blue Canyon Technologies. NASA/Tim Marvel/Blue Canyon Technologies “One of the most challenging tasks in remote sensing from space is achieving required instrument calibration accuracy on-orbit,” said Constantine Lukashin, principal investigator for the Arcstone mission and physical scientist at NASA’s Langley Research Center in Hampton, Virginia. “The Moon is an excellent and available calibration source beyond Earth’s atmosphere. The light reflected off the Moon is extremely stable and measurable at a very high level of detail. Arcstone’s goal is to improve the accuracy of lunar calibration to increase the quality of spaceborne remote sensing data products for generations to come.” 
      Across its planned six-month mission, Arcstone will use a spectrometer — a scientific instrument that measures and analyzes light by separating it into its constituent wavelengths, or spectrum — to measure lunar spectral reflectance. Expected to launch in late June as a rideshare on a small CubeSat, Arcstone will begin collecting data, a milestone called first light, approximately three weeks after reaching orbit. 
      “The mission demonstrates a new, more cost-efficient instrument design, hardware performance, operations, and data processing to achieve high-accuracy reference measurements of lunar spectral reflectance,” said Lukashin.  
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Measuring the lunar reflectance at the necessary ranges of lunar phase angles and librations is required to build a highly accurate lunar reference. A satellite platform in space would provide this required sampling. Arcstone will use a spectrometer to demonstrate the ability to observe and establish a data record of lunar spectral reflectance throughout its librations and phases for other instruments to use the Moon to calibrate sensors.NASA/Scientific Visualization Studio Measurements of lunar reflectance taken from Earth’s surface can be affected by interference from the atmosphere, which can complicate calibration efforts. Researchers already use the Sun and Moon to calibrate spaceborne instruments, but not at a level of precision and agreement that could come from having a universal standard.   
      Lukashin and colleagues want to increase calibration accuracy by getting above the atmosphere to measure reflected solar wavelengths in a way that provides a stable and universal calibration source. Another recent NASA mission, called the Airborne Lunar Spectral Irradiance mission also used sensors mounted on high-altitude aircraft to improve lunar irradiance measurements from planes. 
      There is not an internationally accepted standard (SI-traceable) calibration for lunar reflectance from space across the scientific community or the commercial space industry. 
      “Dedicated radiometric characterization measurements of the Moon have never been acquired from a space-based platform,” said Thomas Stone, co-investigator for Arcstone and scientist at the U.S. Geological Survey (USGS). “A high-accuracy, SI-traceable lunar calibration system enables several important capabilities for space-based Earth observing missions such as calibrating datasets against a common reference – the Moon, calibrating sensors on-orbit, and the ability to bridge gaps in past datasets.” 
      The Arcstone spacecraft with solar panels installed as it is tested before being integrated for launch. Blue Canyon Technologies If the initial Arcstone technology demonstration is successful, a longer Arcstone mission could allow scientists to make the Moon the preferred reference standard for many other satellites. The new calibration standard could also be applied retroactively to previous Earth data records to improve their accuracy or fill in data gaps for data fields. It could also improve high-precision sensor performance on-orbit, which is critical for calibrating instruments that may be sensitive to degradation or hardware breakdown over time in space. 
      “Earth observations from space play a critical role in monitoring the environmental health of our planet,” said Stone. “Lunar calibration is a robust and cost-effective way to achieve high accuracy and inter-consistency of Earth observation datasets, enabling more accurate assessments of Earth’s current state and more reliable predictions of future trends.” 
       
      The Arcstone technology demonstration project is funded by NASA’s Earth Science Technology Office’s In-space Validation of Earth Science Technologies. Arcstone is led by NASA’s Langley Research Center in partnership with Colorado University Boulder’s Laboratory for Atmospheric and Space Physics, USGS,  NASA Goddard Space Flight Center in Greenbelt, Maryland, Resonon Inc., Blue Canyon Technologies, and Quartus Engineering.  

      For more information on NASA’s Arcstone mission visit: 
      https://science.larc.nasa.gov/arcstone/about/
      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Jun 20, 2025 LocationNASA Langley Research Center Related Terms
      Science-enabling Technology Earth Earth Science Earth Science Division Earth's Moon General Goddard Space Flight Center Langley Research Center Lunar Science Science Instruments Science Mission Directorate Small Satellite Missions Technology Explore More
      3 min read NASA Measures Moonlight to Improve Earth Observations
      Article 2 months ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 Min Read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      During the September 2023 daytime reentry of the OSIRIS-REx sample return capsule, the SCIFLI team captured visual data similar to what they're aiming to capture during Mission Possible. Credits: NASA/SCIFLI A NASA team specializing in collecting imagery-based engineering datasets from spacecraft during launch and reentry is supporting a European aerospace company’s upcoming mission to return a subscale demonstration capsule from space.
      NASA’s Scientifically Calibrated In-Flight Imagery (SCIFLI) team supports a broad range of mission needs across the agency, including Artemis, science missions like OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer), and NASA’s Commercial Crew Program. The SCIFLI team also supports other commercial space efforts, helping to develop and strengthen public-private partnerships as NASA works to advance exploration, further cooperation, and open space to more science, people, and opportunities.

      Later this month, SCIFLI intends to gather data on The Exploration Company’s Mission Possible capsule as it returns to Earth following the launch on a SpaceX Falcon 9 rocket. One of the key instruments SCIFLI will employ is a spectrometer detects light radiating from the capsule’s surface, which researchers can use to determine the surface temperature of the spacecraft. Traditionally, much of this data comes from advanced Computational Fluid Dynamics modeling of what happens when objects of various sizes, shapes, and materials enter different atmospheres, such as those on Earth, Mars, or Venus.
      “While very powerful, there is still some uncertainty in these Computational Fluid Dynamics models. Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets,” said Carey Scott, SCIFLI capability lead at NASA’s Langley Research Center in Hampton, Virginia.
      A rendering of a space capsule from The Exploration Company re-entering Earth’s atmosphere.
      Image courtesy of The Exploration CompanyThe Exploration Company The SCIFLI team will be staged in Hawaii and will fly aboard an agency Gulfstream III aircraft during the re-entry of Mission Possible over the Pacific Ocean.
      “The data will provide The Exploration Company with a little bit of redundancy and a different perspective — a decoupled data package, if you will — from their onboard sensors,” said Scott.
      From the Gulfstream, SCIFLI will have the spectrometer and an ultra-high-definition telescope trained on Mission Possible. The observation may be challenging since the team will be tracking the capsule against the bright daytime sky. Researchers expect to be able to acquire the capsule shortly after entry interface, the point at roughly 200,000 feet, where the atmosphere becomes thick enough to begin interacting with a capsule, producing compressive effects such as heating, a shock layer, and the emission of photons, or light.
      Real-world measurements made by the SCIFLI team help NASA researchers refine their models, meaning better performance for sustained flight, higher safety margins for crew returning from the Moon or Mars, or landing more mass safely while exploring other planets.
      Carey Scott
      SCIFLI Capability Lead

      In addition to spectrometer data on Mission Possible’s thermal protection system, SCIFLI will capture imagery of the parachute system opening. First, a small drogue chute deploys to slow the capsule from supersonic to subsonic, followed by the deployment of a main parachute. Lastly, cloud-cover permitting, the team plans to image splashdown in the Pacific, which will help a recovery vessel reach the capsule as quickly as possible.
      If flying over the ocean and capturing imagery of a small capsule as it zips through the atmosphere during the day sounds difficult, it is. But this mission, like all SCIFLI’s assignments, has been carefully modeled, choreographed, and rehearsed in the months and weeks leading up to the mission. There will even be a full-dress rehearsal in the days just before launch.
      Not that there aren’t always a few anxious moments right as the entry interface is imminent and the team is looking out for its target. According to Scott, once the target is acquired, the SCIFLI team has its procedures nailed down to a — pardon the pun — science.
      “We rehearse, and we rehearse, and we rehearse until it’s almost memorized,” he said.
      Ari Haven, left, asset coodinator for SCIFLI’s support of Mission Possible, and Carey Scott, principal engineer for the mission, in front of the G-III aircraft the team will fly on.
      Credit: NASA/Carey ScottNASA/Carey Scott The Exploration Company, headquartered in Munich, Germany, and Bordeaux,
      France, enlisted NASA’s support through a reimbursable Space Act Agreement and will use SCIFLI data to advance future capsule designs.
      “Working with NASA on this mission has been a real highlight for our team. It shows what’s possible when people from different parts of the world come together with a shared goal,” said Najwa Naimy, chief program officer at The Exploration Company. “What the SCIFLI team is doing to spot and track our capsule in broad daylight, over the open ocean, is incredibly impressive. We’re learning from each other, building trust, and making real progress together.”
      NASA Langley is known for its expertise in engineering, characterizing, and developing spacecraft systems for entry, descent, and landing. The Gulfstream III aircraft is operated by the Flight Operations Directorate at NASA’s Armstrong Flight Research Center in Edwards, California.
      Share
      Details
      Last Updated Jun 18, 2025 EditorJoe AtkinsonContactJoe Atkinsonjoseph.s.atkinson@nasa.govLocationNASA Langley Research Center Related Terms
      Langley Research Center General Space Operations Mission Directorate Explore More
      4 min read Career Exploration: Using Ingenuity and Innovation to Create ‘Memory Metals’
      Article 20 hours ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 23 hours ago 2 min read NASA Seeks Commercial Feedback on Space Communication Solutions
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Jacob Shaw A NASA system designed to measure temperature and strain on high-speed vehicles is set to make its first flights at hypersonic speeds – greater than Mach 5, or five times the speed of sound – when mounted to two research rockets launching this summer.
      Technicians in the Environmental Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, used machines called shakers to perform vibration tests on the technology, known as a Fiber Optic Sensing System (FOSS), on March 26. The tests confirmed the FOSS could operate while withstanding the shaking forces of a rocket launch. Initial laboratory and flight tests in 2024 went well, leading to the recently tested system’s use on the U.S. Department of Defense coordinated research rockets to measure critical temperature safety data.
      Hypersonic sensing systems are crucial for advancing hypersonics, a potentially game-changing field in aeronautics. Capitalizing on decades of research, NASA is working to address critical challenges in hypersonic engine technology through its Advanced Air Vehicles Program.
      Using FOSS, NASA will gather data on the strain placed on vehicles during flight, as well as temperature information, which helps engineers understand the condition of a rocket or aircraft. The FOSS system collects data using a fiber about the thickness of a human hair that collects data along its length, replacing heavier and bulkier traditional wire harnesses and sensors.
      Jonathan Lopez and Allen Parker confer on the hypersonic Fiber Optic Sensor System at NASA’s Armstrong Flight Research Center in Edwards, California, on February 13, 2025. The system measures strain and temperature, critical safety data for hypersonic vehicles that travel five time the speed of sound.NASA/Steve Freeman “There is no reliable technology with multiple sensors on a single fiber in the hypersonic environment,” said Patrick Chan, FOSS project manager at Armstrong. “The FOSS system is a paradigm shift for hypersonic research, because it can measure temperature and strain.”
      For decades, NASA Armstrong worked to develop and improve the system, leading to hypersonic FOSS, which originated in 2020. Craig Stephens, the Hypersonic Technology Project associate project manager at NASA Armstrong, anticipated a need for systems and sensors to measure temperature and strain on hypersonic vehicles.
      “I challenged the FOSS team to develop a durable data collection system that had reduced size, weight, and power requirements,” Stephens said. “If we obtain multiple readings from one FOSS fiber, that means we are reducing the number of wires in a vehicle, effectively saving weight and space.”
      The research work has continually made the system smaller and lighter. While a space-rated FOSS used in 2022 to collect temperature data during a NASA mission in low Earth orbit was roughly the size of a toaster, the hypersonic FOSS unit is about the size of two sticks of butter.
      Jonathan Lopez and Nathan Rick prepare the hypersonic Fiber Optic Sensing System for vibration tests in the Environmental Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California. Testing on a machine called a shaker proved that the system could withstand the severe vibration it will endure in hypersonic flight, or travel at five times the speed of sound.NASA/Jim Ross Successful Partnerships
      To help advance hypersonic FOSS to test flights, NASA Armstrong Technology Transfer Office lead Ben Tomlinson orchestrated a partnership. NASA, the U.S. Air Force Test Pilot School in Edwards, California, and the U.S. Air Force’s 586th Flight Test Squadron at Holloman Air Force Base in New Mexico, agreed to a six-flight series in 2024.
      The test pilot school selected an experiment comparing FOSS and traditional sensors, looking at the data the different systems produced.
      The hypersonic FOSS was integrated into a beam fixed onto one end of a pod. It had weight on the other end of the beam so that it could move as the aircraft maneuvered into position for the tests. The pod fit under a T-38 aircraft that collected strain data as the aircraft flew.
      “The successful T-38 flights increased the FOSS technology readiness,” Tomlinson said. “However, a test at hypersonic speed will make FOSS more attractive for a United States business to commercialize.”
      April Torres, from left, Cryss Punteney, and Karen Estes watch as data flows from the hypersonic Fiber Optic Sensing System at NASA’s Armstrong Flight Research Center in Edwards, California. Testing on a machine called a shaker proved that the system could withstand the severe vibration it will endure in hypersonic flight, or travel at five times the speed of sound.NASA/Jim Ross New Opportunities
      After the experiment with the Air Force, NASA’s hypersonic technology team looked for other opportunities to advance the miniaturized version of the system. That interest led to the upcoming research rocket tests in coordination with the Department of Defense.
      “We have high confidence in the system, and we look forward to flying it in hypersonic flight and at altitude,” Chan said.
      A hypersonic Fiber Optic Sensing System, developed at NASA’s Armstrong Flight Research Center in Edwards, California, is ready for a test flight on a T-38 at the U.S. Air Force 586th Flight Test Squadron at Holloman Air Force Base in New Mexico. NASA Armstrong, the flight test squadron, and the U.S. Air Force Test Pilot School in Edwards, California, partnered for the test. From left are Earl Adams, Chathu Kuruppu, Colby Ferrigno, Allen Parker, Patrick Chan, Anthony Peralta, Ben Tomlinson, Jonathan Lopez, David Brown, Lt. Col. Sean Siddiqui, Capt. Nathaniel Raquet, Master Sgt. Charles Shepard, and Greg Talbot.U.S. Air Force/Devin Lopez Share
      Details
      Last Updated Jun 18, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Hypersonic Technology Explore More
      5 min read NASA F-15s Validate Tools for Quesst Mission
      Article 1 week ago 2 min read From Garment Industry to NASA: Meet Systems Engineer Daniel Eng
      Article 2 weeks ago 9 min read ARMD Research Solicitations (Updated June 6)
      Article 2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 Min Read NASA Seeks Commercial Feedback on Space Communication Solutions
      An illustration of a commercial space relay ecosystem. Credits: NASA / Morgan Johnson NASA is seeking information from U.S. and international companies about Earth proximity relay communication and navigation capabilities as the agency aims to use private industry satellite communications services for emerging agency science missions.

      “As part of NASA’s Communications Services Project, the agency is working with private industry to solve challenges for future exploration,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN Program. “Through this effort, NASA missions will have a greater ability to command spacecraft, resolve issues in flight, and bring home more data and scientific discoveries collected across the solar system.”

      In November 2024, NASA announced the TDRS (Tracking and Data Relay Satellite) system, the agency’s network of satellites relaying communications from the International Space Station, ground controls on Earth, and spacecraft, will support only existing missions.

      NASA, as one of many customers, will obtain commercial satellite services rather than owning and operating a replacement for the existing satellite system. As NASA transitions to commercial relay services, the agency will leverage commercial capabilities to ensure support for future missions and stimulate private investment into the Earth proximity region. Commercial service offerings could become available to NASA missions as early as 2028 and will continue to be demonstrated and validated through 2031.

      NASA’s SCaN issued a Request for Information on May 30. Responses are due by 5 p.m. EDT on Friday, July 11.

      NASA’s SCaN Program serves as the management office for the agency’s space communications and navigation. More than 100 NASA and non-NASA missions rely on SCaN’s two networks, the Near Space Network and the Deep Space Network, to support astronauts aboard the International Space Station and future Artemis missions, monitor Earth’s weather, support lunar exploration, and uncover the solar system and beyond.

      Learn more about NASA’s SCaN Program at:
      https://www.nasa.gov/scan
      Share
      Details
      Last Updated Jun 16, 2025 EditorJimi RussellContactMolly KearnsLocationGlenn Research Center Related Terms
      Commercial Space General Glenn Research Center The Future of Commercial Space Tracking and Data Relay Satellite (TDRS) Keep Exploring Discover More Topics From NASA
      Communicating with Missions
      Communications Services Project
      Commercial Space News
      Near Space Network

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Systems Engineer Daniel Eng serves his second year as a judge for the Aerospace Valley Robotics Competition at the Palmdale Aerospace Academy in Palmdale, California, in 2019. NASA/Lauren Hughes As a child in the 1960s, Daniel Eng spent his weekends in New York City’s garment district in Manhattan’s Lower East Side, clipping loose threads off finished clothing. He worked alongside his mother, a seamstress, and his father, a steam press operator, where he developed an eye for detail and a passion for learning. Now, he applies these capabilities at NASA, where he works as an engineer for the Air Mobility Pathfinders project.
      “I often wonder whether the NASA worm magnet that someone left on my refrigerator in college, which I kept all these years, may have something to do with me ending up at NASA,” Eng said.
      His route to NASA was not straightforward. Eng dropped out of high school to join the U.S. Army during the Vietnam War. He earned a GED certificate while on active duty and after his service earned a bachelor’s degree in electrical engineering from the University of Pennsylvania.
      After college, Eng worked as a researcher investigating laser communications for the U.S. Navy, work which launched his career in aerospace. He then held jobs at several global corporations before landing at NASA.
      NASA systems engineer, Daniel Eng, right, talks with student participants at the 2019 Aerospace Valley Robotics Competition at the Palmdale Aerospace Academy in Palmdale, California.NASA/Lauren Hughes “Looking back now, the Navy was ‘my launching point’ into the aerospace industry,” Eng said. “In more than four decades, I held various positions rising through the ranks ranging from circuit card design to systems analyst to production support to project and program management for advanced technology systems on a multitude of military and commercial aircraft projects.”
      Today, he uses virtual models to plan and develop flight test requirements for piloted and automated aircraft, which will help guide future air taxi operations in cities.
      “Engineers can virtually test computer models of designs, concepts, and operations before they are in place or even built, providing a safe and cost-effective way to verify the processes work the way they should,” Eng said.
      He tells his grandkids to stay curious and ask a lot of questions so they can learn as much as possible.
      “Be courteous, humble, kind, and respectful of people, and always remind yourself that you are just one human being among many ‘Earthlings,’” Eng said. “Teamwork is a very important aspect of success because rarely, if ever, does one person succeed on their own without help from others.”
      Share
      Details
      Last Updated Jun 09, 2025 EditorDede DiniusContactLaura Mitchelllaura.a.mitchell@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center People of Armstrong People of NASA Explore More
      4 min read Paul Morris: Filming the Final Frontier
      Article 9 hours ago 6 min read NASA Tests New Ways to Stick the Landing in Challenging Terrain
      Article 2 weeks ago 2 min read NASA Videographer Wins Top Award for Capturing Human Side of Science
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...