Jump to content

15 Years Ago: STS-127 Delivers Japanese External Platform to Space Station


Recommended Posts

  • Publishers
Posted

On July 15, 2009, space shuttle Endeavour began its 23rd trip into space, on the 2JA mission to the International Space Station, the 29th shuttle flight to the orbiting lab. During the 16-day mission, the seven-member STS-127 crew, working with Expedition 20, the first six-person crew aboard the station, completed the primary objectives of the mission. The flight marked the first time 13 people worked about the station at the same time. They added the Exposed Facility (EF) to the Kibo Japanese Experiment Module (JEM), including its first three payloads, and performed a crew exchange of long-duration crew members. The tasks involved five complex space walks and extensive robotic activities using three different manipulator systems during 11 days of docked operations.

The STS-127 crew patch Official photograph of the STS-127 crew of David A. Wolf, left, Christopher J. Cassidy, Douglas G. Hurley, Julie Payette of Canada, Mark L. Polansky, Thomas H. Marshburn, and Timothy L. Kopra The patch for the 2J/A mission
Left: The STS-127 crew patch. Middle: Official photograph of the STS-127 crew of David A. Wolf, left, Christopher J. Cassidy, Douglas G. Hurley, Julie Payette of Canada, Mark L. Polansky, Thomas H. Marshburn, and Timothy L. Kopra. Right: The patch for the 2J/A mission.

The seven-person STS-127 crew consisted of Commander Mark L. Polansky, Pilot Douglas G. Hurley, and Mission Specialists David A. Wolf, Christopher J. Cassidy, Julie Payette of the Canadian Space Agency (CSA), Thomas H. Marshburn, and Timothy L. Kopra. Primary objectives of the mission included the addition of the Exposed Facility (EF) to the Kibo Japanese Experiment Module (JEM) and the long-duration crew member exchange of Kopra for Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA), who had been aboard the space station since March 2009 as a member of Expeditions 18, 19, and 20.

The STS-127 crew during their preflight press conference at NASA’s Johnson Space Center in Houston The STS-127 payloads in Endeavour’s cargo bay at Launch Pad 39A at NASA’s Kennedy Space Center in Florida Space shuttle Endeavour on Launch Pad 39A a few days before launch
Left: The STS-127 crew during their preflight press conference at NASA’s Johnson Space Center in Houston. Middle: The STS-127 payloads in Endeavour’s cargo bay at Launch Pad 39A at NASA’s Kennedy Space Center in Florida. Right: Space shuttle Endeavour on Launch Pad 39A a few days before launch.

Endeavour returned from its previous mission, STS-126, on Nov. 28, 2008. It arrived in the Orbiter Processing Facility at NASA’s Kennedy Space Center (KSC) on Dec. 13, moved to the Vehicle Assembly Building on April 10, 2009, and rolled out to Launch Pad 39B seven days later to serve as the Launch on Need vehicle for STS-125 in May 2009. When that mission flew without issues, on May 31, workers rolled Endeavour around to Pad 39A to begin preparations for STS-127, planned for launch on June 13. A gaseous hydrogen leak scrubbed this first launch attempt. A similar leak halted the second attempt on June 17 and managers reset the launch date to July 11. Managers scrubbed that launch when 11 lightning strikes struck the launch pad area, requiring a review of Endeavour’s and ground systems. With the seven-member crew aboard Endeavour, weather once again halted the launch attempt on July 12. They tried again the next day, but weather conditions led to a fifth scrubbed launch attempt. The charm came on the sixth try.

Liftoff of space shuttle Endeavour on STS-127 carrying the Exposed Facility for the Japanese Kibo module
Liftoff of space shuttle Endeavour on STS-127 carrying the Exposed Facility for the Japanese Kibo module.

On July 15, 2009, at 6:03 p.m. EDT, space shuttle Endeavour lifted off from KSC’s Launch Pad 39A to begin its 23rd trip into space, beginning the 2JA mission to the space station. Eight and a half minutes later, Endeavour and its crew had reached orbit. This marked Wolf’s fourth time in space, Polansky’s third, Payette’s second, while Hurley, Cassidy, Marshburn, and Kopra enjoyed their first taste of true weightlessness.

NASA astronauts Timothy L. Kopra, left, and Thomas H. Marshburn enjoy the first few minutes of weightlessness after Endeavour reached orbit On the mission’s second day, the Shuttle Remote Manipulator System (SRMS) uses the Orbiter Boom Sensor System to image Endeavour’s Thermal Protection System (TPS) Canadian Space Agency astronaut Julie Payette operates the SRMS during the TPS inspection
Left: NASA astronauts Timothy L. Kopra, left, and Thomas H. Marshburn enjoy the first few minutes of weightlessness after Endeavour reached orbit. Middle: On the mission’s second day, the Shuttle Remote Manipulator System (SRMS) uses the Orbiter Boom Sensor System to image Endeavour’s Thermal Protection System (TPS). Right: Canadian Space Agency astronaut Julie Payette operates the SRMS during the TPS inspection.

After reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent five hours on their second day in space conducting a detailed inspection of Endeavour’s nose cap and wing leading edges, with Payette operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

NASA astronaut Christopher J. Cassidy uses a laser range finder during Endeavour’s rendezvous with the space station Endeavour as seen from the space station during the rendezvous Close up of the Kibo Japanese Experiment Module – the astronauts attached the Exposed Facility at the left end of the module
Left: NASA astronaut Christopher J. Cassidy uses a laser range finder during Endeavour’s rendezvous with the space station. Middle: Endeavour as seen from the space station during the rendezvous. Right: Close up of the Kibo Japanese Experiment Module – the astronauts attached the Exposed Facility at the left end of the module.

On July 17, the 34th anniversary of the Apollo-Soyuz Test Project docking, Polansky assisted by his crewmates brought Endeavour in for a docking with the space station. During the rendezvous, Polansky stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Endeavour’s underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the seven-member shuttle crew. Expedition 20 Commander Gennady I. Padalka of Roscosmos stated, “This is a remarkable event for the whole space program.” Polansky responded, “Thirteen is a big number, but we are thrilled to be here.” After exchanging Soyuz seat liners, Kopra joined the Expedition 20 crew and Wakata the STS-127 crew.

Expedition 20, the space station’s first six-person crew and the first, and so far only, time that each of the five space station partners had crew members on board at the same time The first time two Canadians were in space at the same time A medical convention in space – the first time four medical doctors flew in space at the same time
Left: Expedition 20, the space station’s first six-person crew and the first, and so far only, time that each of the five space station partners had crew members on board at the same time. Middle: The first time two Canadians were in space at the same time. Right: A medical convention in space – the first time four medical doctors flew in space at the same time.

STS-127 marked not only the first time that a space shuttle arrived at the station with a six-person crew living aboard, but as it happened, each of the five space station partners had a crew member aboard, a feat not repeated since. The flight also marked the first time that two CSA astronauts worked aboard the space station at the same time. And for the true trivia buffs, the mission marked the first time that four medical doctors worked in space together – an out of this world medical convention!

Transfer of the Exposed Facility from the shuttle to the station Timothy L. Kopra, left, and David A. Wolf work on the station’s truss during the mission’s first spacewalk Douglas G. Hurley, left, and Koichi Wakata of the Japan Aerospace Exploration Agency operate the station’s robotic arm during the first spacewalk
Left: Transfer of the Exposed Facility from the shuttle to the station. Middle: Timothy L. Kopra, left, and David A. Wolf work on the station’s truss during the mission’s first spacewalk. Right: Douglas G. Hurley, left, and Koichi Wakata of the Japan Aerospace Exploration Agency operate the station’s robotic arm during the first spacewalk.

On July 18, the mission’s fourth day, Hurley and Wakata grappled the JEM-EF using the Space Station Remote Manipulator System (SSRMS) or robotic arm, handed it off temporarily to the SRMS operated by Polansky and Payette, moved the station arm into position to grapple it again, and installed it on the end of the Kibo module. Meanwhile, Wolf, with red stripes on his spacesuit, and Kopra, wearing a suit with no stripes, began the mission’s first spacewalk. During the excursion that lasted 5 hours 32 minutes, Wolf and Kopra prepared the JEM for the EF installation and performed other tasks in the shuttle’s payload bay and on the station.

During the second spacewalk, David A. Wolf, left, and Thomas H. Marshburn transfer spare parts to the space station NASA astronaut Douglas G. Hurley, left, and Canadian Space Agency astronaut Julie Payette operate the station’s robotic arm during the second spacewalk
Left: During the second spacewalk, David A. Wolf, left, and Thomas H. Marshburn transfer spare parts to the space station. Right: NASA astronaut Douglas G. Hurley, left, and Canadian Space Agency astronaut Julie Payette operate the station’s robotic arm during the second spacewalk.

The mission’s fifth day involved internal transfers of equipment from the shuttle to the station and the robotic transfer of the Integrated Cargo Carrier (ICC) from the payload bay to the station truss. The ICC carried spare parts that the next day Wolf and Marshburn, wearing dashed red stripes on his spacesuit, transferred to a stowage platform on the station’s exterior during the mission’s second spacewalk, lasting 6 hours and 53 minutes.

An Apollo 11 Moon rock brought to the station to commemorate the 40th anniversary of the first Moon landing Nine of the 13 Expedition 20 and STS-127 crew members share a meal, as NASA astronaut Michael R. Barratt holds the Apollo 11 Moon rock Transfer of the Kibo Experiment Logistics Module from the shuttle to the station
Left: An Apollo 11 Moon rock brought to the station to commemorate the 40th anniversary of the first Moon landing. Middle: Nine of the 13 Expedition 20 and STS-127 crew members share a meal, as NASA astronaut Michael R. Barratt holds the Apollo 11 Moon rock. Right: Transfer of the Kibo Experiment Logistics Module from the shuttle to the station.

The second spacewalk took place on July 20, the 40th anniversary of Apollo 11 landing on the Moon. To commemorate the event, NASA selected a Moon rock returned on that mission and flew it to the space station on STS-119 in March 2009. Expedition 20 astronaut Michael Barratt recorded a video message about the Moon rock, played at a 40th anniversary celebration hosted by the National Air and Space Museum in Washington, D.C., and attended by the Apollo 11 astronauts. The following day, the joint crews continued their work by robotically transferring the JEM Experiment Logistics Module (JEM ELM) and temporarily installing it on the Exposed Facility. Later in the mission, astronauts robotically transferred the three payloads from the ELM to EF.

Christopher J. Cassidy, left, and David A. Wolf during the mission’s third spacewalk Cassidy, left, and Wolf during a battery changeout
Left: Christopher J. Cassidy, left, and David A. Wolf during the mission’s third spacewalk. Right: Cassidy, left, and Wolf during a battery changeout.

Flight Day 8 saw the mission’s third spacewalk, with Wolf making his final excursion, this time accompanied by Cassidy, wearing diagonal red stripes on his suit. Prior to the start of the spacewalk, Hurley and Payette used the station’s arm to relocate the ICC to a different workstation for Wolf and Cassidy to transfer the batteries to the station. As their first task, Wolf and Cassidy prepared the JEM EF for the transfer of the three payload the following day. They managed to transfer two of the four batteries before mission managers decided to shorten the spacewalk due to a slight buildup of carbon dioxide in Cassidy’s suit. The excursion lasted 5 hours and 59 minutes.

Installation of one of the payloads onto the Kibo Exposed Facility (EF) Mark J. Polansky, left, and Koichi Wakata of the Japan Aerospace Exploration Agency, one of the three teams that transferred the EF payloads using Kibo’s robotic arm
Left: Installation of one of the payloads onto the Kibo Exposed Facility (EF). Right: Mark J. Polansky, left, and Koichi Wakata of the Japan Aerospace Exploration Agency, one of the three teams that transferred the EF payloads using Kibo’s robotic arm.

On Flight Day 9, Wakata, assisted by Kopra, inaugurated the operational use of the JEM’s robotic arm by transferring the first payload from the ELM to the EF. Three separate two-person teams transferred each of the three payloads.

Christopher J. Cassidy, left, and Thomas H. Marshburn exchange space station batteries during the mission’s fourth spacewalk Canadian Space Agency astronaut Julie Payette, left, and NASA astronaut Douglas G. Hurley operate the station’s robotic arm during the fourth spacewalk
Left: Christopher J. Cassidy, left, and Thomas H. Marshburn exchange space station batteries during the mission’s fourth spacewalk. Right: Canadian Space Agency astronaut Julie Payette, left, and NASA astronaut Douglas G. Hurley operate the station’s robotic arm during the fourth spacewalk.

On Flight Day 10, Marshburn and Cassidy transferred the remaining four batteries and completed other tasks during the mission’s fourth spacewalk, lasting 7 hours and 12 minutes. Following the battery transfers, Hurley and Payette used the station’s arm to transfer the ICC to Polansky and Hurley operating the shuttle arm, who then stowed it in Endeavour’s payload bay.

The Seattle-Tacoma area The central Florida coast including NASA’s Kennedy Space Center Sicily with Mt. Etna, left, and the “toe” of Italy at right Istanbul straddling Europe, left, and Asia
Left: The Seattle-Tacoma area. Middle left: The central Florida coast including NASA’s Kennedy Space Center. Middle right: Sicily with Mt. Etna, left, and the “toe” of Italy at right. Right: Istanbul straddling Europe, left, and Asia.

With Flight Day 11 given as a crew off duty day, many of the astronauts took part in a favorite activity: looking at and photographing the Earth. They also used the time to catch up on other activities.

Return of the empty Exposed Logistics Module to Endeavour’s payload bay Fisheye view of Christopher J. Cassidy, left, and Thomas H. Marshburn in the U.S. Airlock preparing for the mission’s fifth and final spacewalk Marshburn, left, and Cassidy install cameras on the Kibo Exposed Facility during the fifth and final spacewalk
Left: Return of the empty Exposed Logistics Module to Endeavour’s payload bay. Middle: Fisheye view of Christopher J. Cassidy, left, and Thomas H. Marshburn in the U.S. Airlock preparing for the mission’s fifth and final spacewalk. Right: Marshburn, left, and Cassidy install cameras on the Kibo Exposed Facility during the fifth and final spacewalk.

First thing on Flight Day 12, Payette and Polansky returned the now empty ELM to Endeavour’s payload bay, using the station and shuttle robotic arms. The next day, Marshburn and Cassidy teamed up again for the flight’s fifth and final spacewalk. During the 4-hour 54-minute excursion, they installed a pair of cameras on the Kibo module to help guide future H-II Transfer Vehicle (HTV) cargo spacecraft, the first planned to arrive in September 2009. They also completed a few get ahead tasks. Their excursion brought the total spacewalking time for the mission to 30 hours 30 minutes and marked only the second time that a shuttle mission to the space station completed five spacewalks.

The 13 members of Expedition 20 and STS-127 pose for a final photograph before saying their farewells The crew members exchange farewells, with Koichi Wakata of the Japan Aerospace Exploration Agency, left, appearing a little reluctant to leave after spending 133 days aboard the space station Photograph of the newly installed Exposed Facility on the Kibo Japanese Experiment Module
Left: The 13 members of Expedition 20 and STS-127 pose for a final photograph before saying their farewells. Middle: The crew members exchange farewells, with Koichi Wakata of the Japan Aerospace Exploration Agency, left, appearing a little reluctant to leave after spending 133 days aboard the space station. Right: Photograph of the newly installed Exposed Facility on the Kibo Japanese Experiment Module.

On July 28, the mission’s 14th day, the 13-member joint crew held a brief farewell ceremony, parted company, and closed the hatches between the two spacecraft. With Hurley at the controls, Endeavour undocked from the space station, having spent nearly 11 days as a single spacecraft. Hurley completed a flyaround  of the station, with the astronauts photographing it to document its condition. A final separation burn sent Endeavour on its way.

The International Space Station, with the newly added Exposed Facility and its first payloads, as seen from Endeavour during the departure flyaround. Endeavour casts its shadow on the solar arrays
The International Space Station, with the newly added Exposed Facility and its first payloads, as seen from Endeavour during the departure flyaround. Endeavour casts its shadow on the solar arrays.

The shuttle’s robotic arm grapples the Orbiter Boom Sensor System for the late inspection of Endeavour’s heat shield Deploy of the DRAGONSAT microsatellite Deploy of the ANDE microsatellites
Left: The shuttle’s robotic arm grapples the Orbiter Boom Sensor System for the late inspection of Endeavour’s heat shield. Middle: Deploy of the DRAGONSAT microsatellite. Right: Deploy of the ANDE microsatellites.

The next day, Polansky, Payette, and Hurley used the shuttle’s arm to pick up the OBSS and perform a late inspection of Endeavour’s thermal protection system. On Flight Day 16, the astronauts deployed two satellites. The first, called Dual RF Astrodynamic GPS Orbital Navigation Satellite, or DRAGONSAT, designed by students at the University of Texas, Austin, and Texas A&M University, College Station, consisted of a pair of picosatellites to look at independent rendezvous of spacecraft using GPS. The second, called Atmospheric Neutral Density Experiment-2, or ANDE-2, consisted of a set of Department of Defense microsatellites to look at the density and composition of the atmosphere 200 miles above the Earth. Polansky and Hurley tested Endeavour’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

Endeavour touches down on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida The welcome home ceremony for the STS-127 crew at Ellington Field in Houston
Left: Endeavour touches down on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-127 crew at Ellington Field in Houston.

On July 31, the astronauts closed Endeavour’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent seat for Wakata who had spent the last four months in weightlessness. Polansky fired Endeavour’s two Orbital Maneuvering System engines to bring them out of orbit and heading for a landing half an orbit later. He guided Endeavour to a smooth touchdown at KSC’s Shuttle Landing Facility, capping off a very successful STS-127 mission of 15 days, 16 hours, 45 minutes. They orbited the planet 248 times. Wakata spent 137 days, 15 hours, 4 minutes in space, completing 2,166 orbits of the Earth. Workers at KSC began preparing Endeavour for its next flight, STS-130 in February 2010.

Enjoy the crew narrate a video about the STS-127 mission.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Monday, April 21, 2025, on the company’s 32nd commercial resupply services mission for the agency to the International Space Station. Liftoff was at 4:15 a.m. EDT. SpaceX NASA and SpaceX are targeting 2:45 a.m. EDT, Sunday, Aug. 24, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. This is the 33rd SpaceX commercial resupply services mission to the orbital laboratory for NASA.
      Filled with more than 5,000 pounds of supplies, a SpaceX Dragon spacecraft on a Falcon 9 rocket will lift off from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Dragon will dock autonomously about 7:30 a.m. on Monday, Aug. 25, to the forward port of the space station’s Harmony module.
      Watch agency launch and arrival coverage on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
      In addition to food, supplies, and equipment for the crew, Dragon will deliver several experiments, including bone-forming stem cells for studying bone loss prevention and materials to 3D print medical implants that could advance treatments for nerve damage on Earth. Dragon also will deliver bioprinted liver tissue to study blood vessel development in microgravity and supplies to 3D print metal cubes in space. Research conducted aboard the space station advances future space exploration – including Artemis missions to the Moon and astronaut missions Mars – and provides multiple benefits to humanity.
      In addition, Dragon will perform a reboost demonstration of station to maintain its current altitude. The hardware, located in the trunk of Dragon, contains an independent propellant system separate from the spacecraft to fuel two Draco engines using existing hardware and propellant system design. The boost kit will demonstrate the capability to help sustain the orbiting lab’s altitude starting in September with a series of burns planned periodically throughout the fall of 2025. During NASA’s SpaceX 31st commercial resupply services mission, the Dragon spacecraft performed its first demonstration of these capabilities on Nov. 8, 2024.
      The Dragon spacecraft is scheduled to remain at the space station until December when it will depart and return to Earth with research and cargo, splashing down in the Pacific Ocean off the coast of California.
      NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Tuesday, Aug. 19:
      1 p.m. – International Space Station National Laboratory Science Webinar with the following participants:
      Heidi Parris, associate program scientist, NASA’s International Space Station Program Research Office Michael Roberts, chief scientific officer, International Space Station National Laboratory James Yoo, assistant director, Wake Forest Institute of Regenerative Medicine Tony James, chief architect for science and space, Red Hat Abba Zubair, medical director and scientist, Mayo Clinic Arun Sharma, director, Center for Space Medicine Research, Cedars-Sinai Medical Center Media who wish to participate must register for Zoom access no later than one hour before the start of the webinar.
      The conference will stream live on the International Space Station National Lab’s website.
      Friday, Aug. 22:
      11:30 a.m. – Prelaunch media teleconference with the following participants:
      Bill Spetch, operations integration manager, NASA’s International Space Station Program Heidi Parris, associate program scientist, NASA’s International Space Station Program Research Office Sarah Walker, director, Dragon Mission Management, SpaceX Media who wish to participate by phone must request dial-in information by 10 a.m. Aug. 22, by emailing NASA Kennedy Space Center’s newsroom at: ksc-newsroom@mail.nasa.gov.
      Audio of the media teleconference will stream live on the agency’s YouTube channel.
      Sunday, Aug. 24
      2:25 a.m. – Launch coverage begins on NASA+, Netflix, and Amazon Prime.
      2:45 a.m. – Launch
      Monday, Aug. 25:
      6 a.m. – Arrival coverage begins on NASA+, Netflix, and Amazon Prime.
      7:30 a.m. – Docking
      NASA website launch coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 2:25 a.m. Sunday, Aug. 24, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on our International Space Station blog for updates.
      Attend Launch Virtually
      Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
      Watch, Engage on Social Media Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:
      X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_CASIS
      Facebook: NASA, NASAKennedy, ISS, ISS National Lab
      Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab
      Coverage en Espanol
      Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      Learn more about the mission at:
      https://www.nasa.gov/mission/nasas-spacex-crs-33/
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewskI@nasa.gov
      Share
      Details
      Last Updated Aug 18, 2025 LocationNASA Headquarters Related Terms
      SpaceX Commercial Resupply Commercial Resupply International Space Station (ISS) Johnson Space Center Kennedy Space Center NASA Headquarters View the full article
    • By NASA
      Tess Caswell supports the International Space Station from NASA’s Johnson Space Center in Houston as a capsule communicator, or capcom, as well as through the Extravehicular Activity Office. She is currently on rotation as the Artemis lead capcom, helping to develop training and processes for the Artemis campaign by leveraging her experience supporting the space station.  
      She helps ensure that astronauts aboard the spacecraft receive the right information at the right time. This role involves a range of activities, from learning the language of the spacecraft and its onboard operations to participating in simulations to relay critical information to the crew, especially during dynamic operations or when things go wrong.  
      Read on to learn more about Tess! 
      Tess Caswell serves as lead capsule communicator, or capcom, in the Mission Control Center in Houston for the arrival of NASA’s SpaceX Crew-10 to the International Space Station. NASA/Robert Markowitz Where are you from? 
      Soldotna, Alaska. 
      How would you describe your job to family or friends that may not be familiar with NASA? 
      Capcoms are the people who speak to the astronauts on behalf of Mission Control, and I am the lead for the team of capcoms who will support missions to the Moon as part of NASA’s Artemis campaign.  
      What advice would you give to young individuals aspiring to work in the space industry or at NASA? 
      Remember that space travel is more than just engineers and scientists. It takes all kinds of people to support astronauts in space, including medicine, food science, communications, photography – you name it!
      Tess Caswell
      Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      I like to encourage young people to think about what part of space travel inspires them. We live in an era where there are many companies leveraging space for different purposes, including tourism, settlement, profit, and exploration. It’s important to think about what aspect of space travel interests you – or use things like internships to figure it out! 
      If you’re excited about space but don’t want to be an engineer, there are still jobs for you. 
      How long have you been working for NASA? 
      Eight years, plus a few internships. 
      What was your path to NASA? 
      Internships and student projects were my path to NASA. As an undergraduate, I worked in a student rocket lab, which gave me firsthand experience building and testing hardware. During the summers, I participated in internships to explore various careers and NASA centers. My final internship led directly to my first job after college as an Environmental and Thermal Operating Systems (ETHOS) flight controller in mission control for the space station. 
      I left NASA for a while to pursue an advanced degree in planetary geology and spent two years working at Blue Origin as the lead flight controller for the New Shepard capsule. Ultimately, though, I am motivated by exploration and chose to return to NASA where that is our focus. I landed in the Extravehicular Activity Office (EVA) within the Flight Operations Directorate after returning from Blue Origin. 
      Tess Caswell suits up in the Extravehicular Mobility Unit at the Neutral Buoyancy Laboratory at NASA’s Sonny Carter Training Facility in Houston during training to become an EVA instructor. NASA/Richie Hindman Is there a space figure you’ve looked up to or someone that inspires you?  
      It’s hard to name a specific figure who inspires me. Instead, it’s the caliber of people overall who work in flight operations at Johnson Space Center. Not just the astronauts, but the folks in mission control, in the backrooms supporting the control center, and on the training teams for astronauts and flight controllers. Every single person demonstrates excellence every day. It inspires me to bring my best self to the table in each and every project. 
      What is your favorite NASA memory or the most meaningful project you’ve worked on during your time with NASA? 
      That is a hard one!  
      My current favorite is probably the day I certified as a capcom for the space station. The first time talking to the crew is both nerve-wracking and exciting. You know the entire space station community stops and listens when you are speaking, but it’s incredibly cool to be privileged with speaking to the crew. So, your first few days are a little scary, but awesome. After I’d been declared certified, the crew called down on Space –to Ground to congratulate me. It was a very special moment. I saved a recording of it! 
      Tess Caswell learns to fly the International Space Station Remote Manipulator System, or Canadarm2, in Canada as part of capcom training. Tess Caswell What do you love sharing about station? 
      The international collaboration required to design, build, and operate the International Space Station is a constant source of inspiration for me.
      Tess Caswell
      Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      When I give folks tours of mission control, I like to point out the photo of the U.S.-built Unity node and the Russian-built Zarya module mated in the shuttle cargo bay. The idea that those two modules were designed and built in different countries, launched in two different vehicles, and connected for the first time in low Earth orbit reminds me of what we can all do when we work together across geopolitical boundaries. The space station brings people together in a common mission that benefits all of us. 
      If you could have dinner with any astronaut, past or present, who would it be? 
      Sally Ride, definitely. 
      Do you have a favorite space-related memory or moment that stands out to you? 
      If I had to choose one, I’d say it was the day a person from NASA visited my elementary school in 1995. I remember being completely captivated by his presentation and dying to ask questions when he came by my classroom later. It’s a favorite memory because it poured fuel on the spark of my early childhood interest in space exploration. It wasn’t the thing that initially piqued my interest, but that visit made the dream feel attainable and set me on the course that has me at NASA today. 
      What are some of the key projects you have worked on during your time at NASA? What have been your favorite? 
      I’ve worked in mission control for the space station as an ETHOS flight controller and, later, as a capcom. I’ve also certified as an EVA task backroom controller and scripted three spacewalks that were performed on the space station. While working in EVA, I also helped design the products and processes that will be used to design moonwalks for Artemis astronauts and how flight control operations will work during dynamic, science-driven spacewalks.  
       Developing an EVA is a huge integration effort, and you get to work with a broad range of perspectives to build a solid plan. Then, the spacewalks themselves were both challenging and rewarding. They didn’t go exactly to plan, but we kept the crew safe and accomplished our primary objectives! 
      I’m fortunate to have had so many cool experiences while working at NASA, and I know there will be many more. 
      Tess Caswell, right, and geoscientist Dr. Kelsey Young, left, conduct night operations in NASA’s Johnson Space Center rock yard, testing EVA techniques to prepare for future lunar missions.NASA/Norah Moran What are your hobbies/things you enjoy doing outside of work? 
      I like to stay active, including trail running, taekwondo, backpacking, and cross-country skiing (which is a bit hard to train for in Houston). I spend as much time as I can flying my Piper J-3 Cub, trying to make myself a better pilot each time I fly. Finally, I read and write fiction to let my imagination wander. 
      Day launch or night launch? 
      Night launch! 
      Favorite space movie? 
      Apollo 13, hands down! 
      NASA Worm or Meatball logo? 
      Worm – elegant and cool! 
      Every day, we are conducting exciting research aboard our orbiting laboratory that will help us explore farther into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It is a curated hub of space station research digital media from Johnson and other centers and space agencies.  
      Sign up for our weekly email newsletter to get the updates delivered directly to you.  
      Follow updates on social media at @ISS_Research on X, and on the space station accounts on Facebook and Instagram.  
      Explore More
      3 min read Countdown to Space Station’s Silver Jubilee with Silver Research
      Article 3 days ago 9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator 
      Article 3 months ago 3 min read Meet Alex Olley: Air Force Veteran Powering the Space Station 
      Article 4 months ago View the full article
    • By Space Force
      Space Systems Command activated a new Systems Delta to support the BMC3I Program Executive Office portfolio. This activation synchronizes acquisition efforts for critical space system capabilities and works together with Mission Deltas to improve mission readiness.

      View the full article
    • By Space Force
      The U.S. Space Force published its new Space Force Instruction (SPFI) 36-2903, Dress and Appearance, a comprehensive, service-specific policy consolidating all uniform and grooming guidance into a single document.
      View the full article
    • By NASA
      Northrop Grumman’s Cygnus spacecraft, atop a SpaceX Falcon 9 rocket, soars from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Aug. 4, 2024, for Northrop Grumman’s 21st Commercial Resupply Services mission for NASA.Credit: SpaceX Media accreditation is open for the next launch to deliver NASA science investigations, supplies, and equipment to the International Space Station. A Northrop Grumman Cygnus spacecraft will launch to the orbital laboratory on a SpaceX Falcon 9 rocket for NASA.
      The mission is known as NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23. Liftoff is targeted for mid-September from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Following launch, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus, and the spacecraft will be installed robotically to the Unity module’s Earth-facing port for cargo unloading. The spacecraft will remain at the space station for more than two months.
      Credentialing to cover prelaunch and launch activities is open to U.S. media. The application deadline for U.S. citizens is 11:59 p.m. EDT, Wednesday, Aug. 27. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation, or to request special logistical support, email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA’s Kennedy Space Center newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitor entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      This is the 23rd spacecraft built to deliver goods to the International Space Station. In March, NASA and Northrop Grumman moved up the company’s Commercial Resupply Services-23 mission to September following damage to the Cygnus Pressurized Cargo Module during shipping for the company’s Commercial Resupply Services-22 flight.
      Each resupply mission to the station delivers scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      In addition to food, supplies, and equipment for the crew, Cygnus will deliver research, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. Cygnus also will deliver a specialized UV light system to prevent biofilm growth and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For almost 25 years, humans have continuously lived and worked aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies that enable us to prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s commercial resupply missions at:
      https://www.nasa.gov/station
      -end-
      Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Aug 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Resupply International Space Station (ISS) ISS Research Northrop Grumman Commercial Resupply View the full article
  • Check out these Videos

×
×
  • Create New...