Jump to content

Recommended Posts

  • Publishers
Posted

A few days before they left Skylab on Feb. 8, 1974, the final crew to occupy the station raised its altitude, hoping to keep it in orbit until a future space shuttle could revisit it. But higher than predicted solar activity caused the Earth’s atmosphere to expand, increasing drag on the large vehicle, causing its orbit to decay faster than expected. In 1978, controllers reactivated the station and changed its attitude, hoping to keep it in orbit as long as possible by reducing atmospheric drag. In the meantime, delays in the space shuttle’s development eventually made it impossible for a shuttle to revisit Skylab before it reentered the Earth’s atmosphere. On July 11, 1979, Skylab reentered, with debris landing over the Indian Ocean and Australia. Lessons learned from deorbiting large spacecraft like Skylab and others will inform the eventual deorbiting of the International Space Station.

Skylab as it appeared to the final crew upon its departure Illustration of a proposed Skylab boost mission by the space shuttle A more whimsical depiction of the Skylab reboost by the space shuttle, as drawn by a cartoonist at NASA’s Johnson Space Center in Houston
Left: Skylab as it appeared to the final crew upon its departure. Middle: Illustration of a proposed Skylab boost mission by the space shuttle. Right: A more whimsical depiction of the Skylab reboost by the space shuttle, as drawn by a cartoonist at NASA’s Johnson Space Center in Houston.

When the Skylab 4 astronauts departed the station on Feb. 8, 1974, they left it in a 269-by-283-mile orbit. Just one day after the crew left the station, operators in the Mission Control Center at NASA’s Johnson Space Center in Houston ran a few final systems checks, oriented Skylab in a gravity-gradient attitude – meaning the heavier workshop faced the Earth – vented its atmosphere, and turned off its power. In this attitude, and based on predictions of the Sun’s activity in the upcoming solar cycle that would increase atmospheric drag and reduce Skylab’s altitude, scientists estimated that the station would remain in orbit until March 1983. However, the solar cycle intensified into the second most active one in a century and atmospheric perturbations shifted Skylab out of the gravity-gradient attitude, increasing its drag. By 1977, revised estimates projected Skylab’s reentry occurring as early as mid-1979. Although the space shuttle had yet to fly, NASA devised a plan for astronauts on one of its early missions to attach a rocket stage to Skylab and use it to either boost the station into a higher storage orbit or deorbit it in a controlled fashion into the Pacific Ocean. At 169,000 pounds, Skylab represented the heaviest spacecraft to reenter up to that time, and engineers believed that some of its components would survive the entry. Keeping the debris away from populated areas remained a priority.

Plot of Skylab’s altitude from launch until reentry Illustration of the five ground stations used during the reactivation and tracking of Skylab
Left: Plot of Skylab’s altitude from launch until reentry. Right: Illustration of the five ground stations used during the reactivation and tracking of Skylab.

To ensure that Skylab stayed aloft long enough for this shuttle mission to reach it, NASA needed to reactivate it. Because Skylab had no ability to reboost itself, its rate of decay could only be slightly controlled by changing the station’s attitude. Between March and June 1978, using the limited communications afforded by five ground stations, a small team of controllers methodically reactivated Skylab after a more than four-year passive period. Remarkably, the station’s systems, including its all-important batteries, had survived the intervening period in good condition. When controllers fully reactivated Skylab on June 11, 1978, its altitude had decreased to 250 miles, and to prolong its life NASA decided to keep the station activated to control its attitude. Using its Thruster Attitude Control System, operators commanded Skylab into an End On Velocity Vector (EOVV) minimum drag attitude, with its forward end pointing in the direction of flight. Skylab remained in the EOVV attitude until Jan. 25, 1979, and engineers estimated that this extended the station’s orbital life by 3.5 months. By late 1978, with slips in the shuttle schedule, saving Skylab seemed no longer feasible. In a Dec. 19, 1978, press conference, NASA’s Associate Administrator for Space Transportation Systems John F. Yardley announced the cancellation of the shuttle reboost mission and the end of efforts to control Skylab’s attitude. Yardley emphasized the low likelihood of an uncontrolled Skylab reentry resulting in debris hitting populated areas, citing the example of the spent second stage of the Saturn V rocket that launched Skylab. That empty stage, larger in size although at 83,000 pounds less massive than Skylab, reentered out of control on Jan. 11, 1975, falling harmlessly into the Atlantic Ocean, about 1,000 miles west of Gibraltar.

Illustration of Skylab in the End On Velocity Vector minimum drag attitude Cartoon of “Skylab is falling” fever Ground track of Skylab’s final orbit and the debris footprint in the Indian Ocean and Australia
Left: Illustration of Skylab in the End On Velocity Vector minimum drag attitude. Middle: Cartoon of “Skylab is falling” fever. Image credit: courtesy Chicago Tribune. Right: Ground track of Skylab’s final orbit and the debris footprint in the Indian Ocean and Australia.

On Jan. 25, 1979, controllers maneuvered Skylab from EOVV to solar inertial attitude, the orientation it maintained during its operational life, to ensure its solar arrays remained pointed at the Sun to keep the station’s batteries charged. Studies indicated that as Skylab descended below 161 miles, aerodynamic torques would make it difficult to maintain the solar inertial attitude. On June 20, with Skylab at 163 miles, controllers commanded it into a high-drag Torque Equilibrium Attitude (TEA). This gave controllers the ability to select the best orbit to execute the final reentry, one that overflew mostly water to minimize any potential harm to people and property. Orbit 34,981 on July 11 met those criteria. On that orbit, after Skylab passed over North America, it flew southeast over the Atlantic Ocean, round the southern tip of Africa, then northeast across the Indian Ocean before passing over the next major landmass, mainly sparsely populated areas of Australia. On the planned day of reentry, controllers commanded Skylab into a slow tumble at an altitude of 93 miles to better aim the entry point to the east of the southern tip of Africa, causing the breakup over the Indian Ocean. After this point, the ground no longer controlled the station. With a debris footprint possibly 3,500 miles long, some debris landing in Australia remained a possibility.

Skylab’s entry path over Western Australia, showing sites that recovered debris from the station The museum in Esperance, Western Australia, displays an oxygen tank and a titanium tank from Skylab The museum in Esperance, Western Australia, displays an oxygen tank and a titanium tank from Skylab
Left: Skylab’s entry path over Western Australia, showing sites that recovered debris from the station. Middle and right: The museum in Esperance, Western Australia, displays an oxygen tank and a titanium tank from Skylab. Image credits: courtesy Ben Cooper.

Operators in Mission Control at NASA’s Johnson Space Center in Houston during the Skylab reentry Managers and flight controllers monitor Skylab’s reentry
Left: Operators in Mission Control at NASA’s Johnson Space Center in Houston during the Skylab reentry. Right: Managers and flight controllers monitor Skylab’s reentry.

Tracking at the Bermuda station indicated Skylab’s large solar array still attached to the workshop. Controllers at Ascension Island in the South Atlantic made contact with Skylab as it flew 66 miles overhead, its large solar array beginning to detach from the workshop, itself already heating from the reentry. Once the disintegrating station passed out of range of Ascension, it continued its reentry unmonitored. Skylab finally broke apart at an altitude of 10 miles, slightly lower than expected, moving the impact footprint further east than planned. Pieces of Skylab falling on Western Australia created sonic booms heard by the inhabitants of the few towns in the Outback. The actual documented debris footprint stretched 2,450 miles. A museum in Esperance houses some of the recovered debris. Skylab Flight Director Charles S. Harlan said in a news conference after the event, “The surprise is over. No more suspense. Skylab is on the planet Earth.”

The Salyut 7-Kosmos 1686 complex photographed by the last departing crew Reentry trajectory of the Salyut 7-Kosmos 1686 complex A piece of Salyut 7 recovered in Argentina
Left: The Salyut 7-Kosmos 1686 complex photographed by the last departing crew. Middle: Reentry trajectory of the Salyut 7-Kosmos 1686 complex. Image credit: courtesy H. Klinkrad. Right: A piece of Salyut 7 recovered in Argentina. Image credit: courtesy Carlos Zelayeta.

In contrast to the partially controlled Skylab entry, the Salyut 7-Kosmos 1686 complex made an uncontrolled reentry over Argentina on Feb. 7, 1991. At 88,491 pounds, the complex had about half the mass of Skylab. Although controllers had sent all previous Salyut stations on controlled reentries into the Pacific Ocean, they lost communications with Salyut 7 more than two years before its reentry. A crew last occupied the Salyut 7-Kosmos 1686 complex in June 1986. In August 1986, engines on the Kosmos 1686 module raised the complex’s orbit by 84 miles to 295 miles, with an anticipated reentry in 1994. Like Skylab, controllers considered a possible retrieval of Salyut 7 by a Buran space shuttle before that program’s cancellation. The last communications with Salyut 7 occurred in December 1989. Again, like Skylab, higher than anticipated solar activity in the late 1980s accelerated its descent. The station initially entered a gravity gradient attitude with the heavier Kosmos 1686 facing the Earth, but that attitude degraded significantly as the station encountered denser atmosphere in January 1991. And although said to be uncontrollable, apparently on Feb. 5, ground teams commanded it into a head on attitude to reduce drag and direct entry to an orbit that overflew less populated areas. Fuel depletion did not allow completion of the maneuver and atmospheric drag torqued the vehicle away from this attitude. Although planned for reentry over the south Pacific Ocean, Salyut 7 overshot the target and came down over Argentina, with a few fragments recovered.

The Mir complex in 1998 The March 2001 reentry of Mir photographed from Fiji The reentry trajectory of Mir in March 2001
Left: The Mir complex in 1998. Middle: The March 2001 reentry of Mir photographed from Fiji. Right: The reentry trajectory of Mir in March 2001.

Lessons learned from the earlier reentries of large space stations led controllers to devise a three-stage process to deorbit the Mir space station in a controlled fashion into the Pacific Ocean in March 2001. In the first stage, controllers allowed orbital drag to bring the 285,940-pound station, at the time the heaviest object to reenter, down to an average altitude of 140 miles. For the second stage, on March 23, the docked Progress M1-5 fired its engines twice to lower Mir’s orbit to 103 by 137 miles. Two orbits later, the Progress fired its engines for 22 minutes to bring Mir out of orbit. It burned up on reentry over the South Pacific Ocean, with observers in Nadi, Fiji, watching its final moments.

The International Space Station, the largest spacecraft in orbit
The International Space Station, the largest spacecraft in orbit.

In anticipation of the eventual controlled disposal of the International Space Station, on June 26, 2024, NASA selected SpaceX to develop and deliver the U.S. Deorbit Vehicle. The vehicle will safely deorbit the space station, the largest and, at over 900,000 pounds, by far the heaviest spacecraft in orbit, after the end of its operational life, currently expected in 2030. Past experiences can provide useful lessons learned.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      For the first time, scientists can observe temperature changes in the Sun’s outer atmosphere thanks to new technology introduced by NASA’s CODEX instrument. This animated, color-coded heat map shows temperature changes over the course of a couple days, where red indicates hotter regions and purple indicates cooler ones. NASA/KASI/INAF/CODEX Key Points:
      NASA’s CODEX investigation captured images of the Sun’s outer atmosphere, the corona, showcasing new aspects of its gusty, uneven flow. The CODEX instrument, located on the International Space Station, is a coronagraph — a scientific tool that creates an artificial eclipse with physical disks — that measures the speed and temperature of solar wind using special filters. These first-of-their-kind measurements will help scientists improve models of space weather and better understand the Sun’s impact on Earth. Scientists analyzing data from NASA’s CODEX (Coronal Diagnostic Experiment) investigation have successfully evaluated the instrument’s first images, revealing the speed and temperature of material flowing out from the Sun. These images, shared at a press event Tuesday at the American Astronomical Society meeting in Anchorage, Alaska, illustrate the Sun’s outer atmosphere, or corona, is not a homogenous, steady flow of material, but an area with sputtering gusts of hot plasma. These images will help scientists improve their understanding of how the Sun impacts Earth and our technology in space.
      “We really never had the ability to do this kind of science before,” said Jeffrey Newmark, a heliophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the principal investigator for CODEX. “The right kind of filters, the right size instrumentation — all the right things fell into place. These are brand new observations that have never been seen before, and we think there’s a lot of really interesting science to be done with it.”
      The Sun continuously radiates material in the form of the solar wind. The Sun’s magnetic field shapes this material, sometimes creating flowing, ray-like formations called coronal streamers. In this view from NASA’s CODEX instrument, large dark spots block much of the bright light from the Sun. Blocking this light allows the instrument’s sensitive equipment to capture the faint light of the Sun’s outer atmosphere. NASA/KASI/INAF/CODEX NASA’s CODEX is a solar coronagraph, an instrument often employed to study the Sun’s faint corona, or outer atmosphere, by blocking the bright face of the Sun. The instrument, which is installed on the International Space Station, creates artificial eclipses using a series of circular pieces of material called occulting disks at the end of a long telescope-like tube. The occulting disks are about the size of a tennis ball and are held in place by three metal arms.
      Scientists often use coronagraphs to study visible light from the corona, revealing dynamic features, such as solar storms, that shape the weather in space, potentially impacting Earth and beyond.
      NASA missions use coronagraphs to study the Sun in various ways, but that doesn’t mean they all see the same thing. Coronagraphs on the joint NASA-ESA Solar and Heliospheric Observatory (SOHO) mission look at visible light from the solar corona with both a wide field of view and a smaller one. The CODEX instrument’s field of view is somewhere in the middle, but looks at blue light to understand temperature and speed variations in the background solar wind.
       
      In this composite image of overlapping solar observations, the center and left panels show the field-of-view coverage of the different coronagraphs with overlays and are labeled with observation ranges in solar radii. The third panel shows a zoomed-in, color-coded portion of the larger CODEX image. It highlights the temperature ratios in that portion of the solar corona using CODEX 405.0 and 393.5 nm filters. NASA/ESA/SOHO/KASI/INAF/CODEX “The CODEX instrument is doing something new,” said Newmark. “Previous coronagraph experiments have measured the density of material in the corona, but CODEX is measuring the temperature and speed of material in the slowly varying solar wind flowing out from the Sun.”
      These new measurements allow scientists to better characterize the energy at the source of the solar wind.
      The CODEX instrument uses four narrow-band filters — two for temperature and two for speed — to capture solar wind data. “By comparing the brightness of the images in each of these filters, we can tell the temperature and speed of the coronal solar wind,” said Newmark.
      Understanding the speed and temperature of the solar wind helps scientists build a more accurate picture of the Sun, which is necessary for modeling and predicting the Sun’s behaviors.
      “The CODEX instrument will impact space weather modeling by providing constraints for modelers to use in the future,” said Newmark. “We’re excited for what’s to come.”
      by NASA Science Editorial Team
      NASA’s Goddard Space Flight Center, Greenbelt, Md
      CODEX is a collaboration between NASA Goddard Space Flight Center and the Korea Astronomy and Space Science Institute (KASI) with additional contribution from Italy’s National Institute for Astrophysics (INAF).
      Share








      Details
      Last Updated Jun 10, 2025 Related Terms
      Heliophysics Coronagraph Coronal Diagnostic Experiment (CODEX) Goddard Space Flight Center Heliophysics Division Space Weather The Sun The Sun & Solar Physics View the full article
    • By European Space Agency
      Video: 00:02:46 For half a century, the European Space Agency (ESA) has been serving Europe as its space agency and inspiring its citizens. On 30 May 1975, the ESA Convention was signed by 10 founding Member States and has since now expanded to 23 Member States, three Associate Members, four Cooperating States and a Cooperation Agreement with Canada. This anniversary year provides the opportunity to reflect not only on ESA’s past achievements, but even more so on its future perspectives.
      View the full article
    • By NASA
      NASA Nearly all of NASA’s ninth class of astronaut candidates, along with two European trainees, poses for photos in the briefing room in the public affairs facility at NASA’s Johnson Space Center in Houston on July 7, 1980.
      Group 9 was announced on May 29, 1980; the candidates would go on to make history in spaceflight and at NASA. For example, Charles Bolden (kneeling at far right) traveled to orbit four times aboard the space shuttle between 1986 and 1994, then became the agency’s first African American administrator in 2009. Franklin Chang-Diaz (fifth from the right, standing) was the first Hispanic American to fly in space and Jerry Ross (middle, standing in the back) was the first person to be launched into space seven times.
      Image credit: NASA
      View the full article
    • By NASA
      Image data: NASA/JPL-Caltech/SwRI/MSSS; Image processing: Jackie Branc (CC BY) JunoCam, the visible light imager aboard NASA’s Juno spacecraft, captured this view of Jupiter’s northern high latitudes during the spacecraft’s 69th flyby of the giant planet on Jan. 28, 2025. Jupiter’s belts and zones stand out in this enhanced color rendition, along with the turbulence along their edges caused by winds going in different directions.
      The original JunoCam data used to produce this view was taken from an altitude of about 36,000 miles (58,000 kilometers) above Jupiter’s cloud tops. JunoCam’s raw images are available for the public to peruse and process into image products. Citizen scientist Jackie Branc processed the image.
      Since Juno arrived at Jupiter in 2016, it has been probing beneath the dense, forbidding clouds encircling the giant planet – the first orbiter to peer so closely. It seeks answers to questions about the origin and evolution of Jupiter, our solar system, and giant planets across the cosmos.
      Learn more about NASA citizen science.
      Image credit: Image data: NASA/JPL-Caltech/SwRI/MSSS; Image processing: Jackie Branc (CC BY)
      View the full article
    • By NASA
      NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
      To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
      See highlights from the 2025 Student Launch.
      Text credit: NASA/Janet Sudnik
      Image credit: NASA/Charles Beason
      View the full article
  • Check out these Videos

×
×
  • Create New...