Jump to content

Take a Summer Cosmic Road Trip With NASA’s Chandra and Webb


Recommended Posts

  • Publishers
Posted
Cosmic Road Trip: four distinct composite images from NASA's Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid, Rho Ophiuchi at lower right, the heart of the Orion Nebula at upper right, the galaxy NGC 3627 at lower left and the galaxy cluster MACS J0416.
Cosmic Road Trip: four distinct composite images from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid, Rho Ophiuchi at lower right, the heart of the Orion Nebula at upper right, the galaxy NGC 3627 at lower left and the galaxy cluster MACS J0416.
X-ray: NASA/CXC/SAO; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI

It’s time to take a cosmic road trip using light as the highway and visit four stunning destinations across space. The vehicles for this space get-away are NASA’s Chandra X-ray Observatory and James Webb Space Telescope.

The first stop on this tour is the closest, Rho Ophiuchi, at a distance of about 390 light-years from Earth. Rho Ophiuchi is a cloud complex filled with gas and stars of different sizes and ages. Being one of the closest star-forming regions, Rho Ophiuchi is a great place for astronomers to study stars. In this image, X-rays from Chandra are purple revealing infant stars that violently flare and produce X-rays. Infrared data from Webb are red, yellow, cyan, light blue and darker blue and provide views of the spectacular regions of gas and dust.

Rho Ophiuchi, a cloud complex filled with gas, and dotted with stars. The murky green and gold cloud resembles a ghostly head in profile, swooping down from the upper left, trailing tendrils of hair. Cutting across the bottom edge and lower righthand corner of the image is a long, narrow, brick red cloud which resembles the ember of a stick pulled from a fire. Several large white stars dot the image. Many are surrounded by glowing neon purple rings, and gleam with diffraction spikes.
X-ray: NASA/CXC/MIT/C. Canizares; IR: NASA/ESA/CSA/STScI/K. Pontoppidan; Image Processing: NASA/ESA/STScI/Alyssa Pagan, NASA/CXC/SAO/L. Frattare and J. Major

The next destination is the Orion Nebula. Still located in the Milky Way galaxy, this region is a little bit farther from our home planet at about 1,500 light-years away. If you look just below the middle of the three stars that make up the “belt” in the constellation of Orion, you may be able to see this nebula through a small telescope. With Chandra and Webb, however, we get to see so much more. Chandra reveals young stars that glow brightly in X-rays, colored in red, green, and blue, while Webb shows the gas and dust in darker red that will help build the next generation of stars here.

chandrawebb3-m42.jpg?w=2048
X-ray: NASA/CXC/Penn State/E.Fei

It’s time to leave our galaxy and visit another. Like the Milky Way, NGC 3627 is a spiral galaxy that we see at a slight angle. NGC 3627 is known as a “barred” spiral galaxy because of the rectangular shape of its central region. From our vantage point, we can also see two distinct spiral arms that appear as arcs. X-rays from Chandra in purple show evidence for a supermassive black hole in its center while Webb finds the dust, gas, and stars throughout the galaxy in red, green, and blue. This image also contains optical data from the Hubble Space Telescope in red, green, and blue.

The galaxy NGC 3627 appears pitched at an oblique angle, tilted from our upper left down to our lower right. Much of its face is angled toward us, making its spiral arms, composed of red and purple dots, easily identifiable. Several bright white dots ringed with neon purple speckle the galaxy. At the galaxy’s core, where the spiral arms converge, a large white and purple glow identified by Chandra provides evidence of a supermassive black hole.
Spiral galaxy NGC 3627.
X-ray: NASA/CXC/SAO; Optical: NASA/ESO/STScI, ESO/WFI; Infrared: NASA/ESA/CSA/STScI/JWST; Image Processing:/NASA/CXC/SAO/J. Major

Our final landing place on this trip is the farthest and the biggest. MACS J0416 is a galaxy cluster, which are among the largest objects in the Universe held together by gravity. Galaxy clusters like this can contain hundreds or even thousands of individual galaxies all immersed in massive amounts of superheated gas that Chandra can detect. In this view, Chandra’s X-rays in purple show this reservoir of hot gas while Hubble and Webb pick up the individual galaxies in red, green, and blue.

Here is the distant galaxy cluster known as MACS J0416. The blackness of space is packed with glowing dots and tiny shapes, in whites, purples, oranges, golds, and reds, each a distinct galaxy. Upon close inspection (and with a great deal of zooming in!) the spiraling arms of some of the seemingly tiny galaxies are revealed in this highly detailed image. Gently arched across the middle of the frame is a soft band of purple; a reservoir of superheated gas detected by Chandra.
ACS J0416 galaxy cluster.
X-ray: NASA/CXC/SAO/G. Ogrean et al.; Optical/Infrared: (Hubble) NASA/ESA/STScI; IR: (JWST) NASA/ESA/CSA/STScI/Jose M. Diego (IFCA), Jordan C. J. D’Silva (UWA), Anton M. Koekemoer (STScI), Jake Summers (ASU), Rogier Windhorst (ASU), Haojing Yan (University of Missouri)

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description:

This release features four distinct composite images from NASA’s Chandra X-ray Observatory and the James Webb Space Telescope, presented in a two-by-two grid.

At our lower right is Rho Ophiuchi, a cloud complex filled with gas, and dotted with stars. The murky green and gold cloud resembles a ghostly head in profile, swooping down from the upper left, trailing tendrils of hair. Cutting across the bottom edge and lower righthand corner of the image is a long, narrow, brick red cloud which resembles the ember of a stick pulled from a fire. Several large white stars dot the image. Many are surrounded by glowing neon purple rings, and gleam with diffraction spikes.

At our upper right of the grid is a peek into the heart of the Orion Nebula, which blankets the entire image. Here, the young star nursery resembles a dense, stringy, dusty rose cloud, peppered with thousands of glowing golden, white, and blue stars. Layers of cloud around the edges of the image, and a concentration of bright stars at its distant core, help convey the depth of the nebula.

In the lower left of the two-by-two grid is a hazy image of a spiral galaxy known as NGC 3627. Here, the galaxy appears pitched at an oblique angle, tilted from our upper left down to our lower right. Much of its face is angled toward us, making its spiral arms, composed of red and purple dots, easily identifiable. Several bright white dots ringed with neon purple speckle the galaxy. At the galaxy’s core, where the spiral arms converge, a large white and purple glow identified by Chandra provides evidence of a supermassive black hole.

At the upper left of the grid is an image of the distant galaxy cluster known as MACS J0416. Here, the blackness of space is packed with glowing dots and tiny shapes, in whites, purples, oranges, golds, and reds, each a distinct galaxy. Upon close inspection (and with a great deal of zooming in!) the spiraling arms of some of the seemingly tiny galaxies are revealed in this highly detailed image. Gently arched across the middle of the frame is a soft band of purple; a reservoir of superheated gas detected by Chandra.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Lane Figueroa
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
      NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
      Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
      “Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
      All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
      Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
      Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
      Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
      The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
      Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
      “HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
      Frozen Water — Almost Everywhere
      Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
      The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
      This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
      The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
      Learn more about spectroscopy
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 7 Min Read Webb’s Titan Forecast: Partly Cloudy With Occasional Methane Showers
      These images of Titan were taken by NASA’s James Webb Space Telescope on July 11, 2023 (top row) and the ground-based W.M. Keck Observatories on July 14, 2023 (bottom row). They show methane clouds appearing at different altitudes in Titan’s northern hemisphere. Full image and description below. Credits:
      NASA, ESA, CSA, STScI, and W.M. Keck Observatories Saturn’s moon Titan is an intriguing world cloaked in a yellowish, smoggy haze. Similar to Earth, the atmosphere is mostly nitrogen and has weather, including clouds and rain. Unlike Earth, whose weather is driven by evaporating and condensing water, frigid Titan has a methane cycle.
      NASA’s James Webb Space Telescope, supplemented with images from the Keck II telescope, has for the first time found evidence for cloud convection in Titan’s northern hemisphere, over a region of lakes and seas. Webb also has detected a key carbon-containing molecule that gives insight into the chemical processes in Titan’s complex atmosphere.
      Titan’s Weather
      On Titan, methane plays a similar role to water on Earth when it comes to weather. It evaporates from the surface and rises into the atmosphere, where it condenses to form methane clouds. Occasionally it falls as a chilly, oily rain onto a solid surface where water ice is hard as rocks.
      “Titan is the only other place in our solar system that has weather like Earth, in the sense that it has clouds and rainfall onto a surface,” explained lead author Conor Nixon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The team observed Titan in November 2022 and July 2023 using both Webb and one of the twin ground-based W.M. Keck Observatories telescopes. Those observations not only showed clouds in the mid and high northern latitudes on Titan – the hemisphere where it is currently summer – but also showed those clouds apparently rising to higher altitudes over time. While previous studies have observed cloud convection at southern latitudes, this is the first time evidence for such convection has been seen in the north. This is significant because most of Titan’s lakes and seas are located in its northern hemisphere and evaporation from lakes is a major potential methane source. Their total area is similar to that of the Great Lakes in North America.
      On Earth the lowest layer of the atmosphere, or troposphere, extends up to an altitude of about 7 miles (12 kilometers). However, on Titan, whose lower gravity allows the atmospheric layers to expand, the troposphere extends up to about 27 miles (45 kilometers). Webb and Keck used different infrared filters to probe to different depths in Titan’s atmosphere, allowing astronomers to estimate the altitudes of the clouds. The science team observed clouds that appeared to move to higher altitudes over a period of days, although they were not able to directly see any precipitation occurring.
      Image A: Titan (Webb and Keck Image)
      These images of Titan were taken by NASA’s James Webb Space Telescope on July 11, 2023 (top row) and the ground-based W.M. Keck Observatories on July 14, 2023 (bottom row). They show methane clouds (denoted by the white arrows) appearing at different altitudes in Titan’s northern hemisphere. On the left side are representative-color images from both telescopes. In the Webb image light at 1.4 microns is colored blue, 1.5 microns is green, and 2.0 microns is red (filters F140M, F150W, and F200W, respectively). In the Keck image light at 2.13 microns is colored blue, 2.12 microns is green, and 2.06 microns is red (H2 1-0, Kp, and He1b, respectively).
      In the middle column are single-wavelength images taken by Webb and Keck at 2.12 microns. This wavelength is sensitive to emission from Titan’s lower troposphere. The rightmost images show emission at 1.64 microns (Webb) and 2.17 microns (Keck), which favor higher altitudes, in Titan’s upper troposphere and stratosphere (an atmospheric layer above the troposphere). It demonstrates that the clouds are seen at higher altitudes on July 14 than earlier on July 11, indicative of upward motion.
       
      NASA, ESA, CSA, STScI, and W.M. Keck Observatories Titan’s Chemistry
      Titan is an object of high astrobiological interest due to its complex organic (carbon-containing) chemistry. Organic molecules form the basis of all life on Earth, and studying them on a world like Titan may help scientists understand the processes that led to the origin of life on Earth.
      The basic ingredient that drives much of Titan’s chemistry is methane, or CH4. Methane in Titan’s atmosphere gets split apart by sunlight or energetic electrons from Saturn’s magnetosphere, and then recombines with other molecules to make substances like ethane (C2H6) along with more complex carbon-bearing molecules.
      Webb’s data provided a key missing piece for our understanding of the chemical processes: a definitive detection of the methyl radical CH3. This molecule (called “radical” because it has a “free” electron that is not in a chemical bond) forms when methane is broken apart. Detecting this substance means that scientists can see chemistry in action on Titan for the first time, rather than just the starting ingredients and the end products.
      “For the first time we can see the chemical cake while it’s rising in the oven, instead of just the starting ingredients of flour and sugar, and then the final, iced cake,” said co-author Stefanie Milam of the Goddard Space Flight Center.
      Image B: Chemistry in Titan’s Atmosphere
      This four-panel infographic demonstrates a key chemical process believed to occur in the atmosphere of Saturn’s moon Titan.
      1. Titan has a thick, nitrogen (N2) atmosphere that also contains methane (CH4).
      2. Molecules known as methyl radicals (CH3) form when methane is broken apart by sunlight or energetic electrons from Saturn’s magnetosphere.
      3. It then recombines with other molecules or with itself to make substances like ethane (C2H6).
      4. Methane, ethane, and other molecules condense and rain out of the atmosphere, forming lakes and seas on Titan’s surface. NASA’s James Webb Space Telescope detected the methyl radical on Titan for the first time, providing a key missing piece for our understanding of Titan’s chemical processes.
        NASA, ESA, CSA, and Elizabeth Wheatley (STScI) The Future of Titan’s Atmosphere
      This hydrocarbon chemistry has long-term implications for the future of Titan. When methane is broken apart in the upper atmosphere, some of it recombines to make other molecules that eventually end up on Titan’s surface in one chemical form or another, while some hydrogen escapes from the atmosphere. As a result, methane will be depleted over time, unless there is some source to replenish it.
      A similar process occurred on Mars, where water molecules were broken up and the resulting hydrogen lost to space. The result was the dry, desert planet we see today.
      “On Titan, methane is a consumable. It’s possible that it is being constantly resupplied and fizzing out of the crust and interior over billions of years. If not, eventually it will all be gone and Titan will become a mostly airless world of dust and dunes,” said Nixon.
      Video: Webb Spies Rain Clouds, New Molecule on Titan
      Of all the alien worlds in our solar system, one in particular resembles our home planet. Titan, the largest moon of Saturn, is the only other place we know of where you could walk along the seashore or stand in the rain. However, Titan’s exotic seas and its oily raindrops are not made of water, but of the natural gases methane and ethane, super-chilled into liquid form. Now, NASA’s James Webb Space Telescope has revealed a crucial, missing step in how ethane is formed, and its discovery could tell us about the future of Titan’s atmosphere. Credit: NASA’s Goddard Space Flight Center. Producer/Editor: Dan Gallagher. Lead Scientist/Narrator: Conor Nixon. Lead Animator: Jenny McElligott. Lead Visualizer: Andrew J Christensen. Scientist: Nicholas Lombardo. Animator/Art Director: Michael Lentz. Animation Lead: Walt Feimer. Animators: Jonathan North, Wes Buchanan, Kim Dongjae, Chris Meaney, Adriana Manrique Gutierrez. Data Visualizers: Mark SubbaRao, Kel Elkins, Ernie Wright. Data Provider: Juan Lora. Executive Producer: Wade Sisler. Social Media Support: Kathryn Mersmann. Public Affairs: Laura Betz.
      Complementing the Dragonfly Mission
      More of Titan’s mysteries will be probed by NASA’s Dragonfly mission, a robotic rotorcraft scheduled to land on Saturn’s moon in 2034. Making multiple flights, Dragonfly will explore a variety of locations. Its in-depth investigations will complement Webb’s global perspective.
      “By combining all of these resources, including Webb, NASA’s Hubble Space Telescope, and ground-based observatories, we maintain continuity between the former Cassini/Huygens mission to Saturn and the upcoming Dragonfly mission,” added Heidi Hammel, vice president of the Association of Universities for Research in Astronomy and a Webb Interdisciplinary Scientist.
      This data was taken as part of Hammel’s Guaranteed Time Observations program to study the Solar System. The results were published in the journal Nature Astronomy.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature Astronomy.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science
      Conor Nixon (NASA-GSFC), Heidi Hammel (AURA)
      Related Information
      Learn more about Titan
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      Webb Blog: Webb, Keck Telescopes Team Up to Track Clouds on Saturn’s Moon Titan
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Titan



      Saturn and Titan Resources


      This page showcases our resources for those interested in learning more about Saturn and Titan.


      Dragonfly


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Planets Saturn Saturn Moons Science & Research The Solar System Titan View the full article
    • By USH
      In recent months, Earth has been experiencing a string of bizarre and unsettling phenomena. Massive power outages have struck Spain and Portugal, with similar blackouts occurring across the globe. Aircraft have inexplicably crashed or fallen from the sky. Lights - streetlamps, billboards, car headlights, even indoor lighting are flickering erratically, and the problem persists. 

      Power failures have disrupted air traffic control centers. Strange, unexplained noises have been heard coming from the sky. In parts of the U.S., blue rain has reportedly fallen. The Schumann Resonance, Earth’s natural electromagnetic frequency, has spiked dramatically. Most disturbing of all, now birds have been seen suddenly dropping dead, either mid-flight or while perched on power lines. 
      It feels as if the planet is enveloped in a powerful, unseen force, an invisible energy field swarming the Earth, disrupting both man-made and natural systems. But where is it coming from? 
      One theory suggests that we may be experiencing the delayed impact of a massive astronomical event that occurred thousands of years ago, such as a supernova, the cataclysmic explosion of a dying star. These cosmic blasts release enormous amounts of electromagnetic radiation, including gamma rays and X-rays, which can travel across space for thousands or even millions of years before reaching other celestial bodies, like Earth. 
      Interestingly, some scientists have speculated that a gamma-ray burst from a distant supernova might have triggered the Ordovician mass extinction around 440 million years ago. If such radiation can wipe out entire ecosystems, could a similar event be silently influencing the strange phenomena we're seeing today? 
      It might sound improbable, but what if Earth is now being bathed in residual energy from a long-past cosmic event, energy that is only just now arriving and interacting with our atmosphere and technology? 
      And if that's true… could these strange occurrences be the early signs of something even more serious to come? 
      Additional: MrMBB333, a well-known YouTuber, is also closely following these remarkable events. He shares daily live footage from around the world and often questions what is truly happening. In his latest video below he shares the mystery of the birds dropping dead while perched on power lines.
         
      You can watch his videos on his YouTube channel: https://www.youtube.com/user/MrMBB333/videosView the full article
    • By NASA
      Explore This Section Science Science Activation Take a Tour of the Cosmos with… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning
      Ready for a tour of the cosmos? NASA’s Universe of Learning has released a new, dynamic way for lifelong learners to explore NASA’s breathtaking images of the universe—ViewSpace interactive Image Tours. ViewSpace has an established track record of providing museums, science centers, libraries, and other informal learning environments with free, web-based videos and digital interactives—like its interactive Image Sliders. These new Image Tours are another unique experience from NASA’s Universe of Learning, created through a collaboration between scientists that operate NASA telescopes and experts well-versed in the most modern methods of learning. Hands-on, self-directed learning resources like these have long been valued by informal learning sites as effective means for engaging and intriguing users with the latest discoveries from NASA’s space telescope missions—while encouraging lifelong learners to continue their passionate exploration of the stars, galaxies, and distant worlds.
      With these new ViewSpace Image Tours, visitors can take breathtaking journeys through space images that contain many exciting stories. The “Center of the Milky Way Galaxy” Tour, for example, uses breathtaking images from NASA’s Hubble, Spitzer, and Chandra X-ray telescopes and includes eleven Tour Stops, where users can interact with areas like “the Brick”—a dense, dark cloud of hydrogen molecules imaged by Spitzer. Another Tour Stop zooms toward the supermassive black hole, Sagittarius A*, offering a dramatic visual journey to the galaxy’s core.
      In other tours, like the “Herbig-Haro 46/47” Tour, learners can navigate through points of interest in an observation from a single telescope mission. In this case, NASA’s James Webb Space Telescope provides the backdrop where lifelong learners can explore superheated jets of gas and dust being ejected at tremendous speeds from a pair of young, forming stars. The power of Webb turns up unexpected details in the background, like a noteworthy distant galaxy famous for its uncanny resemblance to a question mark. Each Interactive Image Tour allows people to examine unique features through videos, images, or graphical overlays to identify how those features have formed in ways that static images alone can’t convey.
      These tours, which include detailed visual descriptions for each Tour Stop, illuminate the science behind the beauty, allowing learners of all ages to develop a greater understanding of and excitement for space science, deepening their engagement with astronomy, regardless of their prior experience. Check out the About the Interactives page on the ViewSpace website for a detailed overview of how to use the Image Tours.
      ViewSpace currently offers three Image Tours, and the collection will continue growing:
      Center of the Milky Way Galaxy:
      Peer through cosmic dust and uncover areas of intense activity near the Milky Way’s core, featuring imagery from the Hubble Space Telescope, Spitzer Space Telescope, and the Chandra X-ray Observatory.
      Herbig-Haro 46/47:
      Witness how a tightly bound pair of young stars shapes their nebula through ejections of gas and dust in an image from the James Webb Space Telescope.
      The Whirlpool Galaxy:
      Explore the iconic swirling arms and glowing core of a stunning spiral galaxy, with insights into star formation, galaxy structure, and more in a Hubble Space Telescope image.
      “The Image Tours are beautiful, dramatic, informational, and easy to use,” explained Sari Custer, Chief of Science and Curiosity at Arizona Science Center. “I’m excited to implement them in my museum not only because of the incredible images and user-friendly features, but also for the opportunity to excite and ignite the public’s curiosity about space.”
      NASA’s Universe of Learning is supported by NASA under cooperative agreement award number NNX16AC65A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Select views from various Image Tours. Clockwise from top left: The Whirlpool Galaxy, Center of the Milky Way Galaxy, Herbig-Haro 46/47, detail view in the Center of the Milky Way Galaxy. Share








      Details
      Last Updated May 13, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Astrophysics For Educators Explore More
      5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora


      Article


      1 day ago
      2 min read Hubble Comes Face-to-Face with Spiral’s Arms


      Article


      4 days ago
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The 2025 internship class at NASA’s Armstrong Flight Research Center in Edwards, California, stand in front of the historic X-1E aircraft on display at the center. From left are interns: Tyler Requa, Gokul Nookula, Madeleine Phillips, Oscar Keiloht Chavez Ramirez, and Nicolas Marzocchetti.NASA/Steve Freeman Lee esta historia en español aquí.
      Do you dream of working for NASA and contributing to exploration and innovation for the benefit of humanity? The agency’s internship programs provide high school and college students opportunities to advance NASA’s mission in aeronautics, science, technology, and space.  
      Claudia Sales, Kassidy McLaughlin, and Julio Treviño started their careers as interns at NASA’s Armstrong Flight Research Center in Edwards, California, where they continue to explore the secrets of the universe. Their journeys highlight the long-term impact of the NASA’s science, technology, engineering, and mathematics (STEM) programs.
      Claudia Sales, NASA’s acting X-59 deputy chief engineer and airworthiness certification lead for the quiet supersonic research aircraft, supports ground testing for Acoustic Research Measurements (ARM) flights. The test campaign to evaluate technologies that reduce aircraft noise was conducted at NASA’s Armstrong Flight Research Center in Edwards, California, in 2018.NASA/Ken Ulbrich Claudia Sales
      “I knew since I was a child that I wanted to work for NASA,” said Claudia Sales, acting X-59 deputy chief engineer X-59 deputy chief engineer and airworthiness certification lead for the agency’s quiet supersonic research aircraft.
      Sales’ journey at NASA started in 2005 as a Pathways intern, a NASA work-study (co-op) program. She worked in propulsion and structures branches and supported such projects as the X-43A hypersonic research aircraft (Hyper-X) and the X-37 reusable orbital launch vehicle, where she had the opportunity to perform calculations for thermal estimations and trajectory analyses. She also completed design work with NASA Armstrong’s Experimental Fabrication Shop.
      “It had been a dream of mine to be a part of unique, one-of-a-kind flight research projects,” Sales said. “My mentor was amazing at exposing me to a wide variety of experiences and working on something unique to one day be implemented on an air vehicle to make the world a better place.”
      Claudia Sales, NASA’s acting X-59 deputy chief engineer and airworthiness certification lead for the quiet supersonic research aircraft, stands in front of a Gulfstream G-III, also known as Subsonic Research Aircraft Testbed (SCRAT). Sales supported ground testing as test conductor for Acoustics Research Measurements (ARM) flights at NASA’s Armstrong Research Flight Center in Edwards, California, in 2018.NASA/Ken Ulbrich NASA’s flight systems engineer, Kassidy Mclaughlin conducts environmental testing on an instrumentation pallet. The pallet was used during NASA’s National Campaign project in 2020 at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Lauren Hughes Kassidy McLaughlin
      Similarly, flight systems engineer Kassidy McLaughlin discovered that mentorship and hands-on experience as an intern were key to her professional development. She currently leads the development of a ground control station at NASA Armstrong.
      In high school and college, McLaughlin enrolled in STEM classes, knowing she wanted to pursue a career in engineering. Encouraged by her mother to apply for a NASA internship, McLaughlin’s career began in 2014 as an intern for NASA Armstrong’s Office of STEM Engagement. She later transitioned to the Pathways program.
      “My mentor gave me the tools necessary, and encouraged me to ask questions,” McLaughlin said. “He helped show me that I was capable of anything if I set my mind to it.”
      During five rotations as an intern, she worked on the Unmanned Aircraft Systems Integration in the National Airspace System (UAS in the NAS) project. “It is such a rewarding feeling to be in a control room when something you have worked on is flying,” McLaughlin said. That experience inspired her to pursue a career in mechanical engineering.
      “NASA Armstrong offered something special when it came to the people,” McLaughlin said. “The culture at the center is so friendly and everyone is so welcoming.”
      Julio Treviño, lead operations engineer for NASA’s Global Hawk SkyRange project, stands in front of an F/A-18 mission support aircraft at NASA’s Armstrong Flight Research Center in Edwards, California.NASA/Joshua Fisher Julio Treviño
      Julio Treviño, lead operations engineer for NASA’s Global Hawk SkyRange project, ensures airworthiness throughout the planning, integration, and flight phases of unique systems and vehicles. He is also a certified mission controller, mission director, and flight test engineer for various agency aircraft.
      Much like McLaughlin, Treviño began his journey in 2018 as a Pathway’s intern for the Dynamic and Controls branch at NASA Armstrong. That experience paved the way for success after graduating with a degree in mechanical engineering.
      “As an intern, I had the opportunity to work on designing and creating a battery model for an all-electric aircraft,” Treviño said. “It was officially published as a NASA software model for use by anyone throughout the agency.”
      Treviño also credits NASA’s culture and people as the best part of his internship. “I had very supportive mentors throughout my time as an intern and the fact that everyone here genuinely loves the work that they do is awesome,” he said.
      2025 Application Deadlines
      Every year, NASA provides more than 2,000 students the opportunity to impact the agency’s mission through hands-on internships. The 2025 application for fall is May 16, 2025.
      To learn more about NASA’s internship programs, application deadlines, and eligibility, visit https://www.nasa.gov/learning-resources/internship-programs/
      Share
      Details
      Last Updated May 12, 2025 EditorDede DiniusContactPriscila Valdezpriscila.valdez@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Internships STEM Engagement at NASA Explore More
      3 min read 5 Tips to Craft a Standout NASA Internship Application
      Article 7 hours ago 3 min read NASA STEM Programs Ignite Curiosity Beyond the Classroom
      Article 2 weeks ago 4 min read Robots, Rovers, and Regolith: NASA Brings Exploration to FIRST Robotics 2025 
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...