Jump to content

Recommended Posts

  • Publishers
Posted
A close-up view of Gateway’s Habitation and Logistics Outpost (HALO) module at the Thales Alenia Space facility in Turin, Italy. The image captures the intricate internal structure of the cylindrical module, highlighting its framework and the interior. The module is positioned horizontally, with light casting dramatic shadows.
View of Gateway’s Habitation and Logistics Outpost (HALO) at a Thales Alenia Space facility in Turin, Italy.
Thales Alenia Space

An interplay of light and shadows cast the docking ports for Gateway, humanity’s first space station around the Moon, into sharp relief. 

Built by NASA commercial partner Northrup Grumman, HALO (Habitation and Logistics Outpost), is one of four modules where international teams of astronauts will live, conduct science, and prepare for missions to the lunar South Pole region. The module’s main structure is currently undergoing testing in Turin, Italy. One docking port seen inside HALO, image right, is where a cargo spacecraft and Gateway’s Lunar View module, provided by ESA (European Space Agency), will dock. The docking port shown outside of HALO, image left, is where the SpaceX Starship and the Blue Origin Blue Moon Human Landing Systems will dock during the Artemis IV and V missions, respectively.

Gateway will launch to lunar orbit with the Power and Propulsion Element, provided by Maxar Space Systems, and later expand with ESA’s Lunar I-Hab and Lunar View modules, the Crew and Science Airlock provided by the Mohammed Bin Rashid Space Centre, advanced external robotics provided by CSA (Canadian Space Agency), and critical hardware from JAXA (Japan Aerospace Exploration Agency).

NASA and its international partners will explore the scientific mysteries of deep space with Gateway. The space station is central to the Artemis architecture that will return humans to lunar surface for scientific discovery and chart a path for the first humans to Mars.

An artist's rendering of Gateway's Habitation and Logistics Outpost (HALO) module.
An artist’s concept image of a docking port on Gateway’s HALO module.
NASA/Alberto Bertolin, Bradley Reynolds
An artist’s rendering provides a detailed view of NASA’s Gateway space station, featuring various interconnected modules and solar panels. Numerous antennas and instruments are visible, all set against the backdrop of a starry outer space. Image Credit: NASA.
An artist’s concept image of the Gateway space station showing ESA’s Lunar View module and a government-reference Human Landing System docked to HALO.
NASA

Share

Details

Last Updated
Jul 10, 2024
Editor
Briana R. Zamora
Contact
Briana R. Zamora

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s X-59 quiet supersonic research aircraft sits on the ramp at Lockheed Martin Skunk Works in Palmdale, California during sunrise, shortly after completion of painting in December 2023.Credit: NASA/Steve Freeman As we observe National Aviation Day Tuesday – a tribute to Orville Wright’s birthday – let’s reflect on both America’s and NASA’s aviation heritage and share how we are pushing the boundaries of flight for the nation’s future. Modern NASA grew from the National Advisory Committee for Aeronautics (NACA), an agency created by Congress in 1915 to advance U.S. aviation. When President Eisenhower signed the National Aeronautics and Space Act of 1958, NACA was dissolved and its people, laboratories and research programs became the foundation of NASA. These intrepid men and women are the cornerstone of the world’s most capable aerospace industry and their legacy lives on today across all facets of the agency.
      The most significant aviation milestones in the twentieth century were achieved through both NASA and NACA research and through the courage of pioneering test pilots. In 1947, the joint NACA/U.S. Army Air Forces (later the U.S. Air Force, or USAF) developed Bell X‑1 flew faster than the speed of sound, shattering the mythical “sound barrier.” This breakthrough, enabled by NACA wind-tunnel data and high-speed aerodynamic expertise, made supersonic flight a reality and led directly to NACA Test Pilot Scott Crossfield being the first human to reach Mach 2, twice the speed of sound, in the Douglass DD558-II a mere six years later. During the X‑15 program of the 1960s, legendary NASA Test Pilots Joe Walker, John McKay, Neil Armstrong, Milt Thompson, and Bill Dana piloted nearly half of the program’s sorties and flew the rocket-powered research plane at altitudes up to 354,200 feet and speeds of 4,520 mph (Mach 6.7).
      The NASA/USAF-developed North American X‑15 became the world’s first reusable hypersonic aerospace vehicle, reaching space (above 50 miles altitude) on 11 separate missions; it provided essential data on materials, flight control and pilot physiology that helped shape the agency’s Mercury, Gemini, Apollo and Space Shuttle programs. These milestones remind us that our nation’s accomplishments are the result of visionary NASA, Department of Defense, industry engineers, and test pilots working together to achieve audacious goals.
      NASA’s commitment to aviation innovation did not stop with early experimental high-speed aircraft. In the 1990s, the U.S. general aviation industry faced a steep decline – production fell from 18,000 aircraft in 1978 to fewer than 1,000 in 1993. NASA saw an opportunity: we envisioned a Small Aircraft Transportation System in which safe, efficient general aviation planes could revitalize a critical industry. To enable that vision, NASA partnered with the Federal Aviation Administration, industry, universities, and non‑profits to create the Advanced General Aviation Transport Experiments (AGATE) consortium in 1994. The AGATE consortium developed safer cockpit displays, crashworthiness improvements, efficient airfoils, and modern manufacturing techniques. These innovations transformed U.S. general aviation, helping spawn industry successes like the Cirrus SR20 and SR22 family of aircraft, which incorporate NASA-derived composite structures and safety features.
      In 2004, NASA’s unmanned X‑43A Hyper-X broke world speed records for air‑breathing aircraft, flying at Mach 6.8 and later Mach 9.6. Those flights demonstrated practical scramjet propulsion and proved that hypersonic cruise flight is achievable.
      Today, we are building on this legacy and pushing the envelope with the X-59. Later this year, NASA Test Pilot Nils Larson will usher in a new era of quiet supersonic flight when he pilots the X‑59 Quesst’s first flight out of NASA’s Armstrong Flight Research Center in Edwards, California. The experimental aircraft, designed to fly at 1.4 times the speed of sound while producing only a gentle sonic “thump” instead of the traditional loud sonic boom, will provide data vital to achieving the vision in President Donald J. Trump’s Executive Order “Leading the World in Supersonic Flight.”
      Hypersonics research is another pillar to our 21st‑century vision. Lessons from the X‑15, X‑43, and Space Shuttle inform our study of high-temperature materials, flight controls and propulsion. These technologies will not only bolster national security but will also spur the development of ultrafast civil transports, shrinking the world even further. We are also investing in 21st century propulsion, additive manufacturing, and autonomy for light aircraft while also developing advanced air traffic control systems. Partnering with U.S. aerospace industry and the FAA, we will bring true 21st century technology into light general aviation aircraft, ensuring America remains at the forefront of aviation innovation.
      I am continually inspired by the ingenuity of our past and the promise of our future. Our roots in NACA remind us that a small group of dedicated men and women can change the world. From the Wright brothers’ pioneering work to the supersonic and hypersonic records set by NASA pilots and vehicles, we have consistently expanded the boundaries of what is possible in flight. Looking ahead, our pursuit of quiet supersonic aircraft, hypersonic technologies, and revitalized general aviation will keep the U.S. aviation industry strong and sustainable for decades to come. On National Aviation Day, we celebrate not only our history but also the teamwork and vision that will carry us into the next century of flight.
      Higher, Farther, Faster!

      Todd C. Ericson is a senior advisor to the NASA administrator for aerospace research and development

      Share
      Details
      Last Updated Aug 19, 2025 EditorJennifer M. Dooren Related Terms
      Aeronautics Flight Innovation NASA Aircraft Supersonic Flight View the full article
    • By Space Force
      The U.S. Space Force will host the Schriever Wargame Capstone 2025 at Maxwell AFB, bringing together more than 350 participants from the DoD, industry and partner nations to explore strategic challenges in a future conflict scenario.

      View the full article
    • By NASA
      Melissa Harris’ official NASA portrait. NASA/Robert Markowitz With over 25 years of experience in human spaceflight programs, Melissa Harris has contributed to numerous programs and projects during key moments in NASA’s history. As the life cycle lead and Independent Review Team review manager for the Commercial Low Earth Orbit Development Program, she guides the agency through development initiatives leading to a new era of space exploration.  

      Harris grew up near NASA’s Johnson Space Center in Houston and spent time exploring the center and trying on astronaut helmets. She later earned her bachelor’s degree in legal studies from the University of Houston, master and subject matter expert certifications in configuration management, and ISO 9001 Lead Auditors Certification. When the opportunity arose, she jumped at the chance to join the International Space Station Program. 

      Harris (right) and her twin sister, Yvonne (left), at the Artemis I launch. Image courtesy of Melissa Harris Starting as a board specialist, Harris spent eight years supporting the space station program boards, panels, and flight reviews. Other areas of support included the International Space Station Mission Evaluation Room and the EVA Crew Systems and Robotics Division managing changes for the acquisition and building of mockups in the Neutral Buoyancy Laboratory and Space Vehicle Mockup Facility in Houston. She then took a leap to join the Constellation Program, developing and overseeing program and project office processes and procedures. Harris then transitioned to the Extravehicular Activity (EVA) Project Office where she was a member of the EVA 23 quality audit team tasked with reviewing data to determine the cause of an in-orbit failure. She also contributed to the Orion Program and Artemis campaign. After spending two years at Axiom Space, Harris returned to NASA and joined the commercial low Earth orbit team. 

      Harris said the biggest lesson she has learned during her career is that “there are always ups and downs and not everything works out, but if you just keep going and at the end of the day see that the hard work and dedication has paid off, it is always the proudest moment.”  

      Her dedication led to a nomination for the Stellar Award by the Rotary National Award for Space Achievement Foundation.

      Harris and her son, Tyler, at the Rotary National Award Banquet in 2024.Image courtesy of Melissa Harris Harris’ favorite part of her role at NASA is working “closely with brilliant minds” and being part of a dedicated and hard-working team that contributes to current space programs while also planning for future programs. Looking forward, she anticipates witnessing the vision and execution of a self-sustaining commercial market in low Earth orbit come to fruition. 

      Outside of work, Harris enjoys being with family, whether cooking on the back porch, over a campfire, or traveling both in and out of the country. She has been married for 26 years to her high school sweetheart, Steve, and has one son, Tyler. Her identical twin sister, Yvonne, also works at Johnson. 

      Harris and her twin sister Yvonne dressed as Mark and Scott Kelly for Halloween in 2024.Image courtesy of Melissa Harris Learn more about NASA’s Commercial Low Earth Orbit Development Program at: 
      www.nasa.gov/commercialspacestations
      View the full article
    • By NASA
      Teresa Sindelar always knew she wanted to be a part of human spaceflight, but she was unsure how to make that dream a reality until a chance encounter with former NASA astronaut Tom Stafford when she was 11 years old.

      The pair met in a local jewelry shop near Sindelar’s Nebraska home, where Gen. Stafford was signing autographs. In addition to his photo, Gen. Stafford gave Sindelar a valuable tip – she should check out the Kansas Cosmosphere, a space museum in Hutchinson, Kansas. “I proceeded to attend every camp the Cosmosphere offered as a student, interned during college, and worked there full time while earning my graduate degree,” Sindelar said.

      Official portrait of Teresa Sindelar.NASA She discovered a passion for teaching and mentoring young students through her work in the museum’s education department and a stint as a high school science teacher. When she began looking for opportunities at NASA, she sought a position that melded instruction with technical work. “I like pouring into others and watching them grow,” she said.

      Today, Sindelar is a chief training officer (CTO) within the Flight Operations Directorate at NASA’s Johnson Space Center in Houston. Along with her fellow CTOs, Sindelar oversees the correct and complete training of NASA astronauts, crew members representing international partners, and all flight controllers. “I put the pieces together,” she said. “It is my job to make sure instructors, schedulers, outside partners, facility managers, and others are all in sync.” She added that CTOs have a unique position because they see the big picture of a training flow and understand the long-term training goals and objectives.

      Teresa Sindelar received a 2025 Space Flight Awareness Program Honoree Award, presented by NASA astronaut Randy Bresnik.NASA “I get to do a lot of cool things and go to a lot of cool places,” she said, noting that the training facilities at Johnson and other NASA centers, as well as facilities managed by international partners, are top-notch. While she does enjoy watching astronauts work through problems and learn new systems, she has a special fondness for flight controller training and mentoring young professionals. “What fills my cup the most is seeing a brand-new employee right out of college blossom into a confident flight controller, do their job well, and make our missions better,” she said. “I like knowing that I had something to do with that.”

      Sindelar has been part of the Johnson team since 2010 and worked as an educator in what was then called the center’s Office of Education and as a crew training instructor in the Space Medicine Operations Directorate before becoming a CTO. In March 2025, Sindelar received a Space Flight Awareness Program Honoree Award for her outstanding leadership in the Private Astronaut Mission (PAM) program, which is an important component of NASA’s strategy for enabling a robust and competitive commercial economy in low Earth orbit. As the lead CTO for the third PAM, Axiom Mission 3, Sindelar managed training while identifying critical inefficiencies, enhancing mission safety and performance. She spearheaded a key stakeholder retreat to streamline operations, reorganized training resources for improved accessibility, and implemented efficiency improvements that optimized mission support. Sindelar’s work was recognized during an award ceremony at NASA’s Kennedy Space Center in Florida, and she got to attend the launch of NASA’s SpaceX Crew-10 mission as a special guest.

      In her 15 years with the agency, she has learned the importance of leading by example. “My team needs to see that I meet the bar I set,” she said. “Leading is about motivating your people so they are committed, not just compliant.”

      Teresa Sindelar (front row, third from left) and her Space Medicine Operations crew training team with the crew members of Expedition 48.NASA Keeping a team motivated and on track is particularly important to training success and safety. “We only get a matter of months to train astronauts to do the most hazardous activities that humans have done, or to train flight controllers who literally have the mission and the lives of astronauts in their hands,” Sindelar said, adding that they cannot afford to have an unfocused or indifferent team.

      Sindelar observed that Johnson’s training team is acutely aware of their responsibilities. “We live and work in the same communities as the crew members,” she said. “We see them at school functions, at the grocery store, at the park. We know their families are counting on us to bring their loved ones home safely.”

      She has also learned that her voice matters. “When I was a young professional, I just never felt I could be influential, but the only person holding me back was me,” she said. “I had to learn to trust in my own instincts. That was definitely outside of my comfort zone.” She credits her mentors with helping her build confidence and knowing when and how to speak up. “I have had many giants of the spaceflight community mold and shape me in my career, from my counselors at the Cosmosphere all the way to flight directors and astronauts,” she said. “It is my privilege to learn from them, and I am grateful to each of them.”

      Outside of work, Sindelar uses her voice in a different way – as part of her church choir. She also plays piano, stating that she is as passionate about music and volunteerism as she is about human spaceflight. She is a member of the Friendswood Volunteer Fire Department, as well, serving on its rehab team and as the department’s chaplain

      Teresa Sindelar (second from right) and her family with a Friendswood Volunteer Fire Department fire engine. Image courtesy of Teresa Sindelar As NASA prepares to return humans to the Moon and journey on to Mars, Sindelar hopes she has taught the next generation of explorers enough so they can show the world the wonders of the universe. “This next generation will see and do things my generation never even thought of,” she said, adding that it is time for them to start leading. “Use your voice. Take care of each other along the way. Reach out and help the next one in line.”

      Sindelar keeps a reminder of that important message on her desk: the picture Gen. Stafford signed all those years ago.
      Explore More
      3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
      Article 5 days ago 3 min read Aaisha Ali: From Marine Biology to the Artemis Control Room 
      Article 7 days ago 4 min read NASA Mission Monitoring Air Quality from Space Extended 
      Article 2 weeks ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions. Through the NASA Innovative Advanced Concepts (NIAC) program, NASA nurtures visionary yet credible concepts that could one day “change the possible” in aerospace, while engaging America’s innovators and entrepreneurs as partners in the journey.  
      These concepts span various disciplines and aim to advance capabilities such as finding resources on distant planets, making space travel safer and more efficient, and even providing benefits to life here on Earth. The NIAC portfolio of studies also includes several solutions and technologies that could help NASA achieve a future human presence on Mars. One concept at a time, NIAC is taking technology concepts from science fiction to reality.  
      Breathing beyond Earth 
      Astronauts have a limited supply of water and oxygen in space, which makes producing and maintaining these resources extremely valuable. One NIAC study investigates a system to separate oxygen and hydrogen gas bubbles in microgravity from water, without touching the water directly. Researchers found the concept can handle power changes, requires less clean water, works in a wide range of temperatures, and is more resistant to bacteria than existing oxygen generation systems for short-term crewed missions. These new developments could make it a great fit for a long trip to Mars.  
      Newly selected for another phase of study, the team wants to understand how the system will perform over long periods in space and consider ways to simplify the system’s build. They plan to test a large version of the system in microgravity in hopes of proving how it may be a game changer for future missions. 
      Detoxifying water on Mars
      Unlike water on Earth, Mars’ water is contaminated with toxic chemical compounds such as perchlorates and chlorates. These contaminants threaten human health even at tiny concentrations and can easily corrode hardware and equipment. Finding a way to remove contaminates from water will benefit future human explorers and prepare them to live on Mars long term. 
      Researchers are creating a regenerative perchlorate reduction system that uses perchlorate reduction pathways from naturally occurring bacteria. Perchlorate is a compound comprised of oxygen and chlorine that is typically used for rocket propellant. These perchlorate reduction pathways can be engineered into a type of bacterium that is known for its remarkable resilience, even in the harsh conditions of space. The system would use these enzymes to cause the biochemical reduction of chlorate and perchlorate to chloride and oxygen, eliminating these toxic molecules from the water. With the technology to detoxify water on Mars, humans could thrive on the Red Planet with an abundant water supply. 
      Tackling deep space radiation exposure 
      Mitochondria are the small structures within cells often called the “powerhouse,” but what if they could also power human health in space? Chronic radiation exposure is among the many threats to long-term human stays in space, including time spent traveling to and from Mars. One NIAC study explores transplanting new, undamaged mitochondria to radiation-damaged cells and investigates cell responses to relevant radiation levels to simulate deep-space travel. Researchers propose using in vitro human cell models – complex 3D structures grown in a lab to mimic aspects of organs – to demonstrate how targeted mitochondria replacement therapy could regenerate cellular function after acute and long-term radiation exposure.  
      While still in early stages, the research could help significantly reduce radiation risks for crewed missions to Mars and beyond. Here on Earth, the technology could also help treat a wide variety of age-related degenerative diseases associated with mitochondrial dysfunction. 
      Suiting up for Mars 
      Mars is no “walk in the park,” which is why specialized spacesuits are essential for future missions. Engineers propose using a digital template to generate custom, cost-effective, high-performance spacesuits. This spacesuit concept uses something called digital thread technology to protect crewmembers from the extreme Martian environment, while providing the mobility to perform daily Mars exploration endeavors, including scientific excursions. 
      This now completed NIAC study focused on mapping key spacesuit components and current manufacturing technologies to digital components, identifying technology gaps, benchmarking required capabilities, and developing a conceptional digital thread model for future spacesuit development and operational support. This research could help astronauts suit up for Mars and beyond in a way like never before.   
      Redefining what’s possible 
      From studying Mars to researching black holes and monitoring the atmosphere of Venus, NIAC concepts help us push the boundaries of exploration. By collaborating with innovators and entrepreneurs, NASA advances concepts for future and current missions while energizing the space economy.  
      If you have a visionary idea to share, you can apply to NIAC’s 2026 Phase I solicitation now until July 15.
      Facebook logo @NASATechnology @NASA_Technology Explore More
      4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space
      Article 3 days ago 3 min read NASA’s Lunar Rescue System Challenge Supports Astronaut Safety
      Article 6 days ago 2 min read Tuning a NASA Instrument: Calibrating MASTER
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      Share
      Details
      Last Updated Jun 23, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
  • Check out these Videos

×
×
  • Create New...