Members Can Post Anonymously On This Site
Europe's new Ariane 6 rocket powers into space
-
Similar Topics
-
By European Space Agency
As preparations to launch Europe’s first MetOp Second Generation, MetOp-SG-A1 satellite continue on track, the team at Europe’s Spaceport in Kourou, French Guiana, has bid a heartfelt farewell to this precious satellite as it was sealed from view within the Ariane 6 rocket’s fairing.
This all-new weather satellite, which hosts the first Copernicus Sentinel-5 instrument, is set to take to the skies on 13 August at 02:37 CEST (12 August 21:37 Kourou time).
View the full article
-
By NASA
Explore This Section Science Courses & Curriculums for… STEM Educators Are Bringing… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms
Professional learning experiences are integral to the enhancement of classroom instruction. Teachers, at the forefront of Science, Technology, Engineering, & Mathematics (STEM) education, play a key role in the advancement of STEM learning ecosystems and citizen science.
On June 24-25, 2025 – despite a major east coast heat wave – twenty-four educators from eight school districts in the Hampton Roads region of southeastern Virginia (Newport News, Hampton City, Virginia Beach City, Isle of Wight County, Poquoson City, Norfolk, York County, and Suffolk Public Schools) converged at the National Institute of Aerospace (NIA) in Hampton, VA for a professional development workshop led by experts from NASA Langley Research Center and the NASA Science Activation program’s NIA-led NASA eClips team. Developed in collaboration with another NASA Science Activation team, GLOBE (Global Learning and Observations to Benefit the Environment) Mission Earth, and with support from the Coastal Virginia STEM Hub (COVA STEM) – a “STEM learning ecosystem targeting pre-K to adult residents in Coastal Virginia” – this two-day training, also provided comprehensive resources, including lesson plans, pacing guides, classroom activities, and books, all designed for integration into Hampton Roads classrooms.
The NASA Langley team led workshop participants through a training about GLOBE, a program dedicated to advancing Earth System science through data collected by volunteer members of the public, also known as ‘citizen scientists’. GLOBE invites educators, students, and members of the public worldwide (regardless of citizenship) to collect and submit cloud, surface temperature, and land cover observations using the GLOBE Observer app – a real-time data collection tool available right on their smartphones. These observations are then used to help address scientific questions at local, regional, and global scales. Through this training, the educators participated in K-20 classroom-friendly sample lessons, hands-on activities, and exploring the GLOBE Observer app, ultimately qualifying them as GLOBE Certified Educators. Earth System science lessons, activities, and information on how to download the GLOBE Observer citizen science app are available on the GLOBE website. Similarly, NASA eClips, which focuses on increasing STEM literacy in K-12 students, provided educators with free, valuable, standards-based classroom resources such as educator guides, informational videos, engineering design packets, and hands-on activities, which are available to educators and students alike on the NASA eClips’ website. Throughout the training, educators collaborated in grade-level groups, brainstorming new ways to integrate these standards-based NASA science resources.
One educator envisioned incorporating GLOBE’s cloud resources and supportive NASA eClips videos into her energy budget unit. Others explored modifying a heat-lamp experiment to include humidity and heat capacity. One teacher enthusiastically noted in response to a GLOBE urban heat island lesson plan, “The hands-on elements are going to be really great deliverables!” The creative energy and passion for education were palpable.
The dedication of both NIA and NASA Langley to education and local community support was evident. This professional learning experience offered educators immediately-applicable classroom activities and fostered connections among NASA science, NASA eClips, the GLOBE Program, and fellow educators across district lines. One educator highlighted the value of these networking opportunities, stating, “I do love that we’re able to collaborate with our colleagues so we can plan for our future units during the school year”. Another participant commented, “This is a great program…I am going to start embedding [this] in our curriculum.”
GME (supported by NASA under cooperative agreement award number NNX16AC54A) and NASA eClips (supported by NASA under cooperative agreement award number NNX16AB91A) are part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
GLOBE educator Marilé Colón Robles demonstrates a kinesthetic activity. Share
Details
Last Updated Aug 04, 2025 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms
Courses & Curriculums for Professionals Earth Science Opportunities For Educators to Get Involved Science Activation Explore More
4 min read NUBE: New Card Game Helps Learners Identify Cloud Types Through Play
Article
3 days ago
3 min read NASA eClips STEM Student Ambassadors Light Up CNU’s 2025 STEM Community Day
Article
2 weeks ago
2 min read GLOBE-Trotting Science Lands in Chesapeake with NASA eClips
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By Space Force
Set to take place Dec. 8-9 at Patrick SFB, the third annual Guardian Arena will bring together 35 elite three-person teams from Space Force units across the country.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This view of tracks trailing NASA’s Curiosity was captured July 26, 2025, as the rover simultaneously relayed data to a Mars orbiter. Combining tasks like this more efficiently uses energy generated by Curiosity’s nuclear power source, seen here lined with rows of white fins at the back of the rover.NASA/JPL-Caltech This is the same view of Curiosity’s July 25 mosaic, with labels indicating some key parts of the rover involved in recent efficiency improvements, plus a few prominent locations in the distance.NASA/JPL-Caltech New capabilities allow the rover to do science with less energy from its batteries.
Thirteen years since Curiosity landed on Mars, engineers are finding ways to make the NASA rover even more productive. The six-wheeled robot has been given more autonomy and the ability to multitask — improvements designed to make the most of Curiosity’s energy source, a multi-mission radioisotope thermoelectric generator (MMRTG). Increased efficiency means the rover has ample power as it continues to decipher how the ancient Martian climate changed, transforming a world of lakes and rivers into the chilly desert it is today.
Curiosity recently rolled into a region filled with boxwork formations. These hardened ridges are believed to have been created by underground water billions of years ago. Stretching for miles on this part of Mount Sharp, a 3-mile-tall (5-kilometer-tall) mountain, the formations might reveal whether microbial life could have survived in the Martian subsurface eons ago, extending the period of habitability farther into when the planet was drying out.
NASA’s Curiosity viewed this rock shaped like a piece of coral on July 24, 2025, the 4,608th Martian day of the mission. The rover has found many rocks that — like this one — were formed by minerals deposited by ancient water flows combined with billions of years of sandblasting by wind.NASA/JPL-Caltech/MSSS Carrying out this detective work involves a lot of energy. Besides driving and extending a robotic arm to study rocks and cliffsides, Curiosity has a radio, cameras, and 10 science instruments that all need power. So do the multiple heaters that keep electronics, mechanical parts, and instruments operating at their best. Past missions like the Spirit and Opportunity rovers and the InSight lander relied on solar panels to recharge their batteries, but that technology always runs the risk of not receiving enough sunlight to provide power.
Instead, Curiosity and its younger sibling Perseverance each use their MMRTG nuclear power source, which relies on decaying plutonium pellets to create energy and recharge the rover’s batteries. Providing ample power for the rovers’ many science instruments, MMRTGs are known for their longevity (the twin Voyager spacecraft have relied on RTGs since 1977). But as the plutonium decays over time, it takes longer to recharge Curiosity’s batteries, leaving less energy for science each day.
The team carefully manages the rover’s daily power budget, factoring in every device that draws on the batteries. While these components were all tested extensively before launch, they are part of complex systems that reveal their quirks only after years in the extreme Martian environment. Dust, radiation, and sharp temperature swings bring out edge cases that engineers couldn’t have expected.
“We were more like cautious parents earlier in the mission,” said Reidar Larsen of NASA’s Jet Propulsion Laboratory in Southern California, which built and operates the rover. Larsen led a group of engineers who developed the new capabilities. “It’s as if our teenage rover is maturing, and we’re trusting it to take on more responsibility. As a kid, you might do one thing at a time, but as you become an adult, you learn to multitask.”
More Efficient Science
Generally, JPL engineers send Curiosity a list of tasks to complete one by one before the rover ends its day with a nap to recharge. In 2021, the team began studying whether two or three rover tasks could be safely combined, reducing the amount of time Curiosity is active.
For example, Curiosity’s radio regularly sends data and images to a passing orbiter, which relays them to Earth. Could the rover talk to an orbiter while driving, moving its robotic arm, or snapping images? Consolidating tasks could shorten each day’s plan, requiring less time with heaters on and instruments in a ready-to-use state, reducing the energy used. Testing showed Curiosity safely could, and all of these have now been successfully demonstrated on Mars.
Another trick involves letting Curiosity decide to nap if it finishes its tasks early. Engineers always pad their estimates for how long a day’s activity will take just in case hiccups arise. Now, if Curiosity completes those activities ahead of the time allotted, it will go to sleep early.
By letting the rover manage when it naps, there is less recharging to do before the next day’s plan. Even actions that trim just 10 or 20 minutes from a single activity add up over the long haul, maximizing the life of the MMRTG for more science and exploration down the road.
Miles to Go
In fact, the team has been implementing other new capabilities on Curiosity for years. Several mechanical issues required a rework of how the robotic arm’s rock-pulverizing drill collects samples, and driving capabilities have been enhanced with software updates. When a color filter wheel stopped turning on one of the two cameras mounted on Mastcam, Curiosity’s swiveling “head,” the team developed a workaround allowing them to capture the same beautiful panoramas.
JPL also developed an algorithm to reduce wear on Curiosity’s rock-battered wheels. And while engineers closely monitor any new damage, they aren’t worried: After 22 miles (35 kilometers) and extensive research, it’s clear that, despite some punctures, the wheels have years’ worth of travel in them. (And in a worst-case scenario, Curiosity could remove the damaged part of the wheel’s “tread” and still drive on the remaining part.)
Together, these measures are doing their job to keep Curiosity as busy as ever.
More About Curiosity
Curiosity was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington as part of NASA’s Mars Exploration Program portfolio. Malin Space Science Systems in San Diego built and operates Mastcam.
For more about Curiosity, visit:
science.nasa.gov/mission/msl-curiosity
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-098
Share
Details
Last Updated Aug 04, 2025 Related Terms
Curiosity (Rover) Mars Mars Science Laboratory (MSL) Radioisotope Power Systems (RPS) Explore More
4 min read NASA Tests New Heat Source Fuel for Deep Space Exploration
Article 2 weeks ago 6 min read Advances in NASA Imaging Changed How World Sees Mars
Article 3 weeks ago 6 min read NASA Mars Orbiter Learns New Moves After Nearly 20 Years in Space
Article 1 month ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.