Jump to content

How a NASA Engineer Supports the Commercialization of Space


Recommended Posts

  • Publishers
Posted
Chris Barnett-Woods, wearing a white dress shirt with black stripes, is shown standing in front of the E-1 Test Stand at NASA’s Stennis Space Center
Chris Barnett-Woods is shown at the E-1 Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, where NASA Stennis accelerates the exploration and commercialization of space and innovates to benefit NASA and industry.
NASA/Danny Nowlin

Chris Barnett-Woods’ favorite movie growing up – Back to the Future – led him to dream of one day building a DeLorean automobile. Instead, the electrical engineer is doing something never imagined as he helps NASA support the commercialization of space for the benefit of all.

“If there is any interest, always apply to work at a place like NASA because you never know where it will take you,” said Barnett-Woods, who is approaching two decades of work at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. “In college, I never thought I would work for NASA. I thought it was a far-off fantasy and could not be a reality. Turns out, it was closer than I thought.”

The Diamondhead, Mississippi, resident is in his 10th year as a NASA engineer and 17th overall at NASA Stennis, following seven years as a contractor before joining NASA.

Barnett-Woods is the electrical lead and instrumentation engineer at the E-1 Test Stand. It has four test cell positions and is a part of the versatile four-stand E Test Complex at NASA Stennis. Overall, the complex includes 12 active test cell positions capable of various component, engine, and stage test activities. 

He describes the customer-focused approach at E-1 as a fast-paced workflow in a constant phase of testing while always keeping safety at the forefront.

“Safety is priority number one, followed by collecting data to help our customers,” said Barnett-Woods. “We ensure everyone goes home in the condition they entered. There is no hesitation that if we are entering an unsafe process or configuration, we will stop right there and make sure we are doing it the right way.”

A typical day for the engineer includes running a system calibration, which ensures all sensors on the facility and test article are reading accurately, followed by red line checks.

The red line checks help maintain a safe work environment in the event a pressure or temperature goes too high. If that were to happen, this process will safely shut down the engine.

Once checks are complete, the hot fire test begins with flowing fuel and oxidizer through the test article to facilitate firing and record data. The data tells the story of performance and allows for design analysis as engineers determine the most optimal way to run the test article.

“It is a fun environment,” the NASA engineer said. “We have a lot of very dedicated people that know the job, love the job, and would do nearly anything for it. We are one big, happy team, like family.”

A hot fire can range between one second to 200 seconds, depending on what is tested. The 2023 NASA Silver Achievement Medal recipient has supported hundreds of hot fires for commercial customers, including companies brand new to the aerospace industry and those more experienced that are looking for specific parameters.

“NASA Stennis is a one-of-a-kind facility in the world,” Barnett-Woods said. “This is the only place where we can do a ground level test of an actual engine hot fire and if you like rockets, this is the place to be.”

For information about NASA’s Stennis Space Center, visit:
Stennis Space Center – NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      A SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus XL spacecraft is launched on NASA’s Northrop Grumman Commercial Resupply Services 23 mission to the International Space Station on Sunday, Sept. 14, 2025.Credit: NASA NASA is sending more science, technology demonstrations, and crew supplies to the International Space Station following the successful launch of the agency’s Northrop Grumman Commercial Resupply Services 23 mission, or Northrop Grumman CRS-23.
      The company’s Cygnus XL spacecraft, carrying more than 11,000 pounds of cargo to the orbiting laboratory, lifted off at 6:11 p.m. EDT Sunday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission is the first flight of the larger, more cargo-capable version of the solar-powered spacecraft. 
      Cygnus XL is scheduled to be captured at 6:35 a.m. on Wednesday, Sept. 17, by the Canadarm2 robotic arm, which NASA astronaut Jonny Kim will operate with assistance from NASA astronaut Zena Cardman. Following capture, the spacecraft will be installed to the Unity module’s Earth-facing port for cargo unloading.
      The resupply mission is carrying dozens of research experiments that will be conducted during Expedition 73, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      These are just a sample of the hundreds of scientific investigations conducted aboard the station in the areas of biology and biotechnology, Earth and space science, physical sciences, as well as technology development and demonstrations. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, where astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including Artemis missions to the Moon and American astronaut missions to Mars.
      NASA’s arrival, capture, and installation coverage are as follows (all times Eastern and subject to change based on real-time operations):
      Wednesday, Sept. 17
      5 a.m. – Arrival coverage begins on NASA+, Amazon Prime, and more.
      6:35 a.m. – Capture of Cygnus XL with the space station’s robotic arm.
      8 a.m. – Installation coverage begins on NASA+, Amazon Prime, and more.
      All coverage times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date information.
      Cygnus XL is scheduled to remain at the orbiting laboratory until March 2026, before it departs and disposes of several thousand pounds of trash through its re-entry into Earth’s atmosphere, where it will harmlessly burn up. The spacecraft is named the S.S. William “Willie” C. McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
      Learn more about this NASA commercial resupply mission at:
      https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
      -end-
      Josh Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Sep 14, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Commercial Resupply ISS Research Johnson Space Center Northrop Grumman Commercial Resupply View the full article
    • By NASA
      NASA’s Northrop Grumman Commercial Resupply Services 23 Rendezvous and Capture
    • By Amazing Space
      NASA / SPACEX CRS-23 ISS RESUPPLY LAUNCH LIVE
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
  • Check out these Videos

×
×
  • Create New...