Jump to content

Recommended Posts

  • Publishers
Posted
6 Min Read

Lagniappe for July 2024

Clyde Conerly, one of the five panelists, shows a satellite replica to the young audience.
Explore the July 2024 issue, featuring NASA Stennis Achieves Primary Success for Historic In-Space Mission, NASA at the Mississippi Comic Convention, NASA Stennis Take Our Children to Work Day,  and more!

Explore Lagniappe for July 2024 featuring:

  • NASA Stennis Achieves Primary Success for Historic In-Space Mission
  • Mississippi Comic Convention Experiences NASA
  • NASA Stennis Hosts Take Our Children to Work Day

Gator Speaks

Conversations filled the room with anticipation for the day ahead.

NASA’s Stennis Space Center hosted Take Our Children to Work Day on June 27 with a day set aside for children of employees to see up close the work carried out at NASA Stennis by its diverse workforce.

A video featuring NASA Stennis Associate Director Rodney McKellip welcomed the enthusiastic crowd. He shared about the different hats worn by the more than 5,000 employees throughout the NASA Stennis federal city.

There are engineers who help make the south Mississippi NASA center the premier rocket engine test facility in the country. NASA Stennis, the place that tested rocket stages to put the first humans on the Moon, remains on the frontlines of preparing NASA and the United States for its return to the Moon through the Artemis campaign to explore more of the lunar surface than ever before.

Those attending Take Our Children to Work Day learned how NASA Stennis has many rocket scientists and test engineers carrying out this work, but that is not all.

Gator, a fictional character, is drawn as a photographer capturing a cyro demo.
Gator Speaks
NASA/Stennis

A team of folks, including accountants, lawyers, environmental specialists, educators, and public affairs specialists, wear the NASA hat to ensure mission success too.

There also are teams climbing on test stands, installing rocket engines into the stands, working with piping, electrical, welding, construction projects, safety inspections, and more.

In addition to being the premier propulsion test site supporting NASA’s mission, NASA Stennis is where commercial companies experience success and benefit from the expertise of NASA personnel. Companies like Relativity Space, Rocket Lab, and Evolution Space have established ongoing operations at NASA Stennis as the commercialization of space continues.

The NASA Stennis federal city also includes a range agencies, universities, and companies sharing costs and carrying out individual missions.

It is the command site for the largest collection of oceanographers in the world and where Navy Seals train. 

Participants learned about such operations from a panel of employees from NASA, Aerojet Rocketdyne, an L3 Harris Technologies company, Lockheed Martin, and Relativity Space.

They toured NASA Stennis and participated in activities facilitated by NASA, Aerojet Rocketdyne, and the National Data Buoy Center. 

The NASA Stennis associate director left them with a final thought before their day started: If you hear something loud during the day, just know that is the sound of progress at the nation’s premier rocket propulsion test facility and federal city known as NASA Stennis.

Sure enough, that afternoon, the unmistakable sound of engine testing could be heard across the site. For this ol‘ Gator, it sounds like music to the ears.

NASA Stennis Top News

NASA Stennis Achieves Primary Success for Historic In-Space Mission

NASA’s Stennis Space Center and partner Sidus Space Inc. announced primary mission success July 2 for the center’s historic in-space mission – an autonomous systems payload aboard an orbiting satellite.

Mississippi Comic Convention Experiences NASA

Science fiction fans at the Mississippi Comic Convention were provided an out-of-this world experience, while learning about NASA, during the two-day event in Jackson, Mississippi, thanks to employees from NASA’s Stennis Space Center.

“I’ve never been to an outreach activity that you reached so many people and from such a wide spectrum of people, from grade schoolers to retired grandparents,” said Troy Frisbie, NASA Stennis legislative affairs officer and chief of staff. “We interacted with a wide audience and really shared how NASA and NASA Stennis benefit all. It was a really, really good experience.”

The NASA booth, at an event that attracted 18,000 people to the Mississippi Trade Mart and Coliseum on June 22-23, featured an immersive experience with virtual reality goggles. Participants were able to view an engine test conducted at NASA Stennis, take a virtual spacewalk while visiting the International Space Station, and experience a simulated rocket launch to Mars.

One group enjoying the interaction with NASA was the Star Trek fan club from Jackson, Mississippi.

“They were real big supporters of NASA,” Frisbie said. “They loved the virtual reality experience and encouraged others at the convention to come by and visit with us.”

NASA Stennis budget analyst Rebecca Mataya and engineers Paul Fuller, Steven Helmstetter, and Chris Barnett-Woods volunteered with Frisbie. The center employees talked to college students majoring in engineering, graphic design, architecture, education, and healthcare.

“The assumption is everybody has to be an engineer to work at NASA, and that is not the case,” Frisbie said. “There are all kinds of opportunities, and that was an eye opener for many.”

Conversations centered on job opportunities and careers with NASA, as well as work conducted at NASA Stennis. The volunteers also fielded general questions about NASA’s powerful SLS (Space Launch System) rocket and the agency’s Artemis campaign of returning astronauts to the Moon for scientific discovery, economic benefits, and inspiration for a new generation of explorers: the Artemis Generation.

“We enjoyed telling the NASA story and how NASA Stennis on the Gulf Coast of Mississippi serves as an economic engine that contributes to this nation’s space dreams,” Frisbie added.

Center Activities

NASA Stennis Breaks Ground with Rolls-Royce on New Testing Area

five officials wearing blue hard hats and yellow vests dig into red clay dirt at the site of a new Rolls-Royce test pad at Stennis Space Center
NASA’s Stennis Space Center continues to support commercial companies and benefit the aerospace industry. The latest example comes as officials from NASA Stennis and Rolls-Royce break ground for the E-1 Hydrogen Test Pad, located at the NASA Stennis E-Complex Test Facility, during a June 27 ceremony. The site will be where Rolls-Royce conducts hydrogen testing for the Pearl 15 engine. The Pearl 15 engine helps power the Bombardier Global 5500 & 6500 aircraft and enables top speeds of Mach 0.90. Groundbreaking participants include (left to right): Adam Newman, Rolls-Royce chief engineer of hydrogen technology; Deborah Robinson, Rolls-Royce director of test and experimental engineering; Troy Frisbie, NASA Stennis legislative affairs specialist and chief of staff; Dan Lyon, Rolls-Royce North America general manager; and Steven Blake, Rolls-Royce North America indirect purchasing, global commodity manager.
NASA/Danny Nowlin

NASA Stennis Hosts NASA Mission Support Directorate

Members of NASA’s Mission Support Directorate stand for a photo with leaders from NASA’s Stennis Space Center and the NASA Shared Services Center
Members of NASA’s Mission Support Directorate met with leaders from NASA’s Stennis Space Center and the NASA Shared Services Center during an onsite visit June 3. The group also participated in an in-depth tour of the NASA Stennis facilities. Pictured (left to right) are Ron Bald, chief counsel for the Office of the General Counsel at NASA Stennis and NASA Shared Services Center; Dinna Cottrell, chief information officer for the NASA Stennis and NASA Shared Services Center Office of the Chief Information Officer; Eli Ouder, procurement officer for NASA Stennis and NASA Shared Services Center; Stacy Houston, executive officer for NASA’s Mission Support Directorate; Michael Tubbs, acting director for the NASA Stennis Center Operations Directorate; Michael Hess, deputy associate administrator for NASA’s Mission Support Directorate; Rodney McKellip, associate director for NASA Stennis; Nichole Pinkney, program manager for NASA’s Mission Support Directorate; Duane Armstrong, manager for the NASA Stennis Strategic Development Office; Gary Benton, director for the NASA Stennis Safety and Mission Assurance Directorate; and Alison Butsch, associate chief financial officer for the External Business Operations Division within the NASA Stennis Office of the Chief Financial Officer.
NASA/Danny Nowlin

Space Force Students Visit NASA Stennis

a group of United States Space Force training students and professors stand at the Thad Cochran Test Stand
United States Space Force training students and professors stand at the Thad Cochran Test Stand on June 4 during a tour of NASA’s Stennis Space Center. NASA Stennis is preparing the test stand to test the exploration upper stage, which will fly on future SLS (Space Launch System) missions as NASA continues its mission of exploring the secrets of the universe for the benefit of all. The upper stage is being built at NASA’s Michoud Assembly Facility in New Orleans as a more powerful second stage to send the Orion spacecraft to deep space. It is expected to fly on the Artemis IV mission. Before that, it will be installed on the Thad Cochran Test Stand (B-2) at NASA Stennis to undergo a series of Green Run tests of its integrated systems to demonstrate it is ready to fly. The Space Force, established in 2019, organizes, trains, and equips personnel to protect U.S. and allied interests in space and to provide space capabilities to the joint forces.
NASA/Danny Nowlin

Louisiana STEM Academy Visits NASA Stennis

a group of high school students pose in front of the Thad Cochran Test Stand at Stennis Space Center
Rising high school juniors and seniors from Ascension Parish, Louisiana, visit the Thad Cochran Test Stand on June 6 during a tour of NASA’s Stennis Space Center. The students are part of the week-long BASF Tech Academy, in coordination with River Parishes Community College, where participants learn about technical careers and education. NASA Stennis is preparing the test stand to test the exploration upper stage, which will fly on future SLS (Space Launch System) missions as NASA continues its mission of exploring the secrets of the universe for the benefit of all. The upper stage is being built at NASA’s Michoud Assembly Facility in New Orleans as a more powerful second stage to send the Orion spacecraft to deep space. It is expected to fly on the Artemis IV mission. Before that, it will be installed on the Thad Cochran Test Stand (B-2) at NASA Stennis to undergo a series of Green Run tests of its integrated systems to demonstrate it is ready to fly.
NASA/Danny Nowlin

Florida A&M STEM Group Visits NASA Stennis

Members of the Florida A&M University Program of Excellence in STEM pose in front of projector screen
Members of the Florida A&M University Program of Excellence in STEM attend a presentation June 21 during a visit to NASA’s Stennis Space Center. The NASA Office of STEM Engagement provided information on grants and student activities during the presentation about NASA Stennis and the work conducted at the unique federal city. The group also visited the Thad Cochran Test Stand and Relativity Space test complex during a site tour. The Program of Excellence in STEM summer academy aims to enhance student knowledge of opportunities in the fields of science, technology, engineering, and mathematics.
NASA/Danny Nowlin

Aerospace States Association Visits NASA Stennis

Members of the Aerospace States Association stand at the Thad Cochran Test Stand
Members of the Aerospace States Association stand at the Thad Cochran Test Stand on June 25 during a visit to NASA’s Stennis Space Center. The group came to the south Mississippi NASA center during the Aerospace States Association conference in New Orleans June 24-27. NASA Stennis will use the Thad Cochran Test Stand (B-2) to test the exploration upper stage, a more powerful second stage to send the Orion spacecraft to deep space on NASA’s SLS (Space Launch System) rocket, ahead of its expected flight on the Artemis IV mission.
NASA/Danny Nowlin

Arkansas-Pine Bluff STEM Summer Institute Visits NASA Stennis

Participants in the University of Arkansas at Pine Bluff STEM (science, technology, engineering and mathematics) Summer Institute stand in front of the Roy Estess Building at NASA’s Stennis Space Center
Participants in the University of Arkansas at Pine Bluff STEM (science, technology, engineering and mathematics) Summer Institute stand in front of the Roy Estess Building at NASA’s Stennis Space Center during a site tour on June 25. The students viewed multiple areas of the federal city, including a visit to the Thad Cochran Test Stand, where students learned about NASA Stennis’ role in the Artemis campaign. NASA is going back to the Moon for scientific discovery, economic benefits, and inspiration for a new generation of explorers: the Artemis Generation. The agency will use what is learned on and around the Moon to take the next giant leap – sending astronauts to Mars. The Arkansas at Pine Bluff STEM program started in 2003 and is designed to help increase the number and diversity of well-prepared STEM graduates.
NASA/Danny Nowlin

NASA Stennis Hosts Take Our Children to Work Day

NASA in the News

Employee Profile

Chris Barnett-Woods, wearing a white dress shirt with black stripes, is shown standing in front of the E-1 Test Stand at NASA’s Stennis Space Center
Chris Barnett-Woods is shown at the E-1 Test Stand at NASA’s Stennis Space Center near Bay St. Louis, Mississippi, where NASA Stennis accelerates the exploration and commercialization of space and innovates to benefit NASA and industry.
NASA/Danny Nowlin

Chris Barnett-Woods’ favorite movie growing up – Back to the Future – led him to dream of one day building a DeLorean automobile. Instead, the electrical engineer is doing something never imagined as he helps NASA support the commercialization of space for the benefit of all.

Looking Back

20 Years Ago This Month: NASA Stennis Moon Tree Honors Apollo 11

Additional Resources

Subscription Info

Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail).

The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin.

To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 13 min read
      The Earth Observer Editor’s Corner: July–September 2025
      NOTE TO READERS: After more than three decades associated with or directly employed by NASA, Steve Platnick [GSFC—Deputy Director for Atmospheres, Earth Sciences Division] stepped down effective August 8, 2025. Steve began his civil servant career at GSFC in 2002, but his GSFC association went back to 1993, first as a contractor and then as one of the earliest employees of the Joint Center for Earth Systems Technology (JCET). During his time at NASA, Steve played an integral role in the sustainability and advancement of NASA’s Earth Observing System platforms and data. He was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team, where he helped advance several key components of the MODIS instrument. He was also the NASA Lead/co-Lead for the Suomi National Polar-orbiting Partnership (Suomi NPP), Atmosphere Discipline from 2012–2020 where he focused on operational cloud optical and microphysical products.
      In 2008, Steve became the Earth Observing System (EOS) Senior Project Scientist. In this role, he led the EOS Project Science Office that supported airborne sensors, ground networks, and calibration labs. The Kudos article titled “Steve Platnick Steps Down from NASA After 34 Years of Service” includes a more detailed account of Steve’s career and includes a list of awards he has received.
      Steve’s departure leaves a vacancy in the author’s chair for “The Editor’s Corner” – another role Steve filled as EOS Senior Project Scientist. Barry Lefer [NASA Headquarters—Associate Director of Research, Earth Science Division] graciously agreed to serve as guest author of the editorial in the current compilation. I want to thank Steve for all his support for The Earth Observer over the years and thank Barry for stepping in as the author of “The Editor’s Corner” for the time being.
      –Alan Ward, Executive Editor, The Earth Observer
      I begin this editorial with news of a successful Earth science launch. At 5:40 PM Indian Standard Time (IST), or 8:10 AM Eastern Daylight Time (EDT), on July 30, 2025, the joint NASA–Indian Space Research Organization (ISRO) Synthetic Aperture Radar, or NISAR, mission launched from the Satish Dhawan Space Centre on India’s southeastern coast aboard an ISRO Geosynchronous Satellite Launch Vehicle (GSLV) rocket 5. The ISRO ground controllers began communicating with NISAR about 20 minutes after launch, at just after 8:29 AM EDT, and confirmed it is operating as expected.
      NISAR will use two different radar frequencies (L-band SAR and S-band SAR) to penetrate clouds and forest canopies. Including L-band and S-band radars on one satellite is an evolution in SAR airborne and space-based missions that, for NASA, started in 1978 with the launch of Seasat. In 2012, ISRO began launching SAR missions starting with Radar Imaging Satellite (RISAT-1), followed by RISAT-1A in 2022, to support a wide range of applications in India.
      Combining the data from these two radars will allow researchers to systematically and globally map Earth – measuring changes of our planet’s surface down to a centimeter (~0.4 inches). With this detailed view, researchers will have an unprecedented ability to observe and measure complex processes from ecosystem disturbances to natural hazards to groundwater issues. All NISAR science data will be freely available and open to the public.
      Following the successful launch, NISAR entered an approximately 90-day commissioning phase to test out systems before science operations begin. A key milestone of that phase was the completion of the deployment of the 39-ft (12-m) radar antenna reflector on August 15 – see Video. The process began on August 9, when the satellite’s boom, which had been tucked close to its main body, started unfolding one joint at a time until it was fully extended about four days later. The reflector assembly is mounted at the end of the boom. On August 15, small explosive bolts that held the reflector assembly in place were fired, enabling the antenna to begin a process called the bloom – its unfurling by the release of tension stored in its flexible frame while stowed like an umbrella. Subsequent activation of motors and cables pulled the antenna into its final, locked position.
      Video: NISAR mission team members at NASA JPL, working with colleagues in India, executed the deployment of the satellite’s radar antenna reflector on Aug. 15, 2025. About 39 feet (12 meters) in diameter, the reflector directs microwave pulses from NISAR’s two radars toward Earth and receives the return signals. Credit: NASA/JPL-Caltech The radar reflector will be used to direct and receive microwave signals from the two radars. By interpreting the differences between the L-band and S-band measurements, researchers will be able to discern characteristics about the surface below. As NISAR passes over the same locations twice every 12 days, scientists can evaluate how those characteristics have changed over time to reveal new insights about Earth’s dynamic surfaces.
      With the radar reflector now in full bloom, scientists have turned their attention to tuning and testing the radar and preparing NISAR for Science Operations, which are anticipated to start around the beginning of November. Congratulations to the NISAR team on a successful launch and deployment of the radar reflector. Along with the science community, I am excited to see what new discoveries will result from the data collected by the first Earth System Observatory mission.
      Turning now to news from active missions, the Soil Moisture Active Passive (SMAP) mission has collected over 10 years of global L-band radiometry observations that have resulted in surface soil moisture, vegetation optical depth (VOD), and freeze/thaw state estimates that outperform past and current products. A decade of SMAP soil moisture observations has led to scientific achievements, including quantifying the linkages of the three main metabolic cycles (e.g., carbon, water, and energy) on land. The data have been widely used by the Earth system science community to improve drought assessments and flood prediction as well as the accuracy of numerical weather prediction models.
      SMAP’s Early Adopter program has helped connect SMAP data with people and organizations that need it. The program has increased the awareness of SMAP mission products, broadened the user community, increased collaboration with potential users, improved knowledge of SMAP data product capabilities, and expedited the distribution and uses of mission products for a suite of 16 products available. For example, the L-band VOD, which is related to water content in vegetation, is being used to better understand water exchanges in the soil–vegetation–atmosphere continuum.
      The SMAP Active–Passive (AP) algorithm – based on data from SMAP and the European Copernicus Program Sentinel-1 C-band synthetic aperture radar (SAR) – will be adapted to work with L-band data from the newly launched NISAR mission. The result will be estimates of global soil moisture at a spatial resolution of 1 km (0.62 mi) or better approximately once per week.
      In addition, the data collected during the SMAP mission would be continued and further enhanced by the European Union’s Copernicus Imaging Microwave Radiometer (CIMR) mission if it launches. This proposed multichannel microwave radiometry observatory includes L-band and four other microwave channels sharing a large mesh reflector – like the one used with SMAP. The plan calls for CIMR to follow a similar approach as SMAP for RFI detection and meet the instrument thermal noise and data latency of SMAP for next-mission desired characteristics.
      To learn more about what SMAP has accomplished see “A Decade of Global Water Cycle Monitoring: NASA Soil Moisture Active Passive Mission.”
      NASA’s Orbiting Carbon Observatory-2 (OCO-2) has been the “gold standard” for atmospheric carbon dioxide (CO2) observations from space for over a decade. The data returned from OCO-2 provide insights into plant health, forest management, forecasting crop yields, fire-risk models, and anticipating droughts. 
      OCO-3, constructed from spare parts left after OCO-2, was launched to the International Space Station (ISS) in 2019, where it has operated for over five years. OCO-3 extends the global CO2 measurement record while adding new capabilities made possible by being on ISS (e.g., detailed views of urban and tropical regions). 
      The overarching OCO mission hasn’t just about been about data and hardware. Although both those elements are parts of the story, the human stories woven through the mission’s successes and setbacks are really what holds the mission together. The feature, “A Tapestry of Tales: 10th Anniversary Reflections from NASA’s OCO-2 Mission,” sheds light on some of these personal stories from the OCO-2 and OCO-3 missions.
      The individual tales contained in this article reveal the grit and determination behind the scenes of the success of OCO-2 and OCO-3, from the anxiety and excitement surrounding the launch of OCO-2, to moments of fieldwork in the Nevada desert, to internships where wildfire responders turned to OCO-2 data to improve fire-risk models. Taken together, these stories form a “tapestry” that reveals how the OCO-2 and OCO-3 missions continue to illuminate the dynamics of Earth’s atmosphere – one breath at a time.
      These personal perspectives underscore that science is not just numbers; it’s people pushing boundaries, navigating failure, and inspiring ways to make our planet safer and healthier. In a time such as this, this is an important reminder.
      The joint NASA–U.S. Geological Survey (USGS) Landsat program has been a cornerstone of Earth observation for over 50 years. On July 13, Landsat 9 collected its millionth image: a stunning shot of the Arctic National Wildlife Refuge in Alaska – see Figure. Landsat 9, the most recent satellite in the Landsat series, orbits Earth alongside Landsat 8. Together, these satellites collect invaluable data about Earth’s changing land surface every eight days.
      Figure: This Landsat 9 image showing the Beaufort Sea shoreline off Alaska and Canada is just one of the scenes captured and processed on July 13, 2025— the same day the USGS EROS archive reached a milestone of one million Landsat 9 Level-1 products. This false color image was made with bands 6, 5, and 4 from the Operational Land Imager. This remote area allows the pristine wilderness environment to support a diverse wildlife and unique ecosystem that includes various species of mammals, birds, and fish. Landsat Level-1 products from Landsat 1 through Landsat 9 can be downloaded at no charge from a number of systems – visit the Landsat Data Access webpage to learn more.  Credit: Public Domain After collecting more than 3.3 million images over the course of more than 26 years in orbit, Landsat 7 was decommissioned on June 4, 2025. A YouTube video released at the time of decommissioning provides a concise visual summary of the Landsat 7 mission’s achievements – and the technical challenges overcome. In addition, The Earth Observer did a feature for the 20th anniversary of Landsat 7 in the July–August 2019 issue, called “The Living Legacy of Landsat 7: Still Going Strong After 20 Years in Orbit” [Volume 31, Issue 4, pp. 4–14] that is a useful resource to learn more about the history and achievements (through 20 years) of the mission.
      One of the strengths of the Landsat program is its potential for data integration with other satellites. The Harmonized Landsat and Sentinel-2 (HLS) product exemplifies this collaborative approach by combining data from Landsat 8 and 9 with data from the European Space Agency’s Copernicus Sentinel-2 A, B, and C missions. Whereas Landsat alone has a repeat time of eight days (i.e., combining Landsat 8 and 9 data); the combined HLS dataset provides imagery for the same location on Earth every 1.6 days – enabling researchers to monitor short-term changes in Earth’s land surface much more effectively than using Landsat or Sentinel-2 data alone.
      HLS became one of the most-downloaded NASA data products in fiscal year 2024, with continued growth on the horizon. In February 2025, the program expanded with nine new vegetation indices based on HLS data, with historical processing back to 2013 scheduled for completion by early 2026. Low-latency HLS products will also be available in late 2026. For the full story of how HLS came to be – see the feature: “Harmonized Landsat and Sentinel-2: Collaboration Drives Innovation.”
      Following a 13-month hibernation, the Global Ecosystem Dynamics Investigation (GEDI) mission was reinstalled to its original location aboard the ISS and resumed operations on April 22, 2024. Since this storage period, GEDI’s lasers have been operating nominally and the mission has continued to produce high-quality observations of the Earth’s three-dimensional structure, amassing 33 billion land surface returns as of November 27, 2024.
      The mission team has been actively processing and releasing post-storage data to the public, with Version 2.1 – GEDI L1B, L2A, L2B, and L4A data products, which include data through November 2024, all available for download. The new L4C footprint-level Waveform Structural Complexity Index (WSCI) product using pre-storage data has also been released. Looking ahead, the team is preparing Version 3.0 (V3) of all data products, which will incorporate post-storage data while improving quality filtering, geolocation accuracy, and algorithm performance.
      The 2025 GEDI Science Team Meeting (STM) brought together the mission science team, competed science team, representatives from the distributed active archive centers (DAACs), collaborators, stakeholders, and data users. Notably, it marked the first in-person gathering of the second competed science team, who shared updates on their research projects. The STM held an important space for brainstorming, knowledge-sharing, and discussion as the GEDI mission continues to flourish in its second epoch. To learn more, see “Summary of the 2025 GEDI Science Team Meeting.”
      Shifting focus to the boreal forests of North America, the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is now in its final year, marking the end of a decade-long scientific endeavor that has transformed our understanding of environmental change in Alaska and western Canada. This ambitious campaign, funded primarily by NASA’s Terrestrial Ecology Program, has successfully progressed through three distinct phases: ecosystem dynamics (2015–2018), ecosystem services (2017–2022), and the current analysis and synthesis phase (2023–present).
      As ABoVE approaches its conclusion, the program has grown to encompass 67 NASA-funded projects with over 1000 participating researchers – a testament to the collaborative scale required to address complex Arctic–boreal ecosystem questions. The program’s integrated approach, combining field research, airborne campaigns, and satellite remote sensing, has generated unprecedented insights into how environmental changes in these northern regions affect both vulnerable ecosystems and society.
      The recent 11th – and final – ABoVE Science Team Meeting was an opportunity to showcase the program’s evolution from data collection to synthesis, highlighting successful community engagement initiatives, cutting-edge research on carbon dynamics and ecosystem responses, and innovative science communication strategies that have made this complex research accessible to diverse audiences. With synthesis activities now underway, ABoVE is positioned to deliver comprehensive insights that will inform Arctic and boreal research for years to come. To learn more, see “Summary of the 11th and Final ABoVE Science Team Meeting.”
      Last but certainly not least, I want to both recognize and congratulate Compton J. Tucker [GSFC—Senior Researcher]. Compton retired from NASA in March 2025 after 48 years of public service, and then in April, was among 149 newly elected members to the National Academy of Sciences (NAS) – which is one of the highest honors in American science. This recognition from NAS brings Compton’s career full circle. He came to GSFC as a NAS postdoc before joining NASA as a civil servant. Compton is a pioneer in the field of satellite-based environmental analysis, using data from various Landsat missions and from the National Oceanographic and Atmospheric Administration’s (NOAA) Advanced Very High Resolution Radiometer (AVHRR) instrument. His research has focused on global photosynthesis on land, determining land cover, monitoring droughts and food security, and evaluating ecologically coupled disease outbreaks. The Kudos, “Compton J. Tucker Retires from NASA and is Named NAS Fellow,” provides more details about Compton’s research achievements and all of the other scientific awards and honors received throughout his career.
      Barry Lefer
      Associate Director of Research, Earth Science Division
      Share








      Details
      Last Updated Sep 10, 2025 Related Terms
      Earth Science View the full article
    • By NASA
      Explore This Section Science Uncategorized Helio Highlights: July… Home Framework for Heliophysics Education About Helio Big Idea 1.1 Helio Big Idea 1.2 Helio Big Idea 1.3 Helio Big Idea 2.1 Helio Big Idea 2.2 Helio Big Idea 2.3 Helio Big Idea 3.1 Helio Big Idea 3.2 Helio Big Idea 3.3 Helio Missions Helio Topics Resource Database About NASA HEAT More Highlights Space Math   5 min read
      Helio Highlights: July 2025
      5 Min Read Helio Highlights: July 2025
      When astronauts return to the Moon, they will need to know what the Sun is doing in order to keep themselves safe and healthy. Credits:
      NASA A Trip to the Moon
      In July 1969, astronauts Neil Armstrong and Buzz Aldrin became the first humans to walk on the Moon. Now, NASA and its international partners in the Artemis accords are working to send humans back there, this time to stay. The trip will be challenging, especially since space is a very uninviting place for humans! One unexpected source of danger will be the Sun.
      The Sun: Friend and Foe
      The energy the Sun provides allows life on Earth to thrive. But this energy can also be dangerous to us. This danger can be as simple as getting a sunburn if you are out in the sunlight for too long, or as complex as a geomagnetic storm causing chaos in our satellite network.
      This animation demonstrates a simulation by the MAGE model of Earth’s magnetosphere being hit by a geospace storm in May 2024, the strongest in nearly 20 years. Storms like this are caused by solar weather that could endanger astronauts en route to the Moon or active on its surface during future missions. NASA’s Scientific Visualization Studio and CGS Team Things get more complicated in space. On Earth, the atmosphere and magnetosphere protect us from most solar energy. But spacecraft and astronauts in space don’t have this protection. For astronauts on upcoming Artemis missions to the Moon, the Sun’s radiation could cause anything from ruined electronics to a greater long-term risk of cancer.
      The Real Risks
      On August 2, 1972, a massive solar storm began with the eruption of sunspot MR11976. One of the Coronal Mass Ejections (CMEs) it produced raced from the Sun to Earth in less than 15 hours. That’s a record that still stands today! This led to power grid fluctuations and caused havoc with spacecraft in flight. Recently declassified U.S. military records show that the storm caused sea mines off the Vietnamese coast to explode, as well.
      Importantly, the August 1972 solar storm happened in between the Apollo 16 and 17 missions to the Moon. Studies show that astronauts en route to the Moon, and especially astronauts on the surface, could have been badly sickened by the radiation that came with it. This threat remains real if a solar storm of similar severity were to occur during future Lunar missions.
      Watchful Protectors
      Organizations like NASA and NOAA keep an eye on the Sun, to forecast potential sources of danger. If a solar flare or Coronal Mass Ejection (CME) is on the way, scientists should be able to spot the danger ahead of time so that steps can be taken to reduce the damage. For astronauts going to the Moon, this may be as simple as taking shelter in a special part of their spacecraft.
      An animated gif of a Coronal Mass Ejection (CME) erupting from the surface of the Sun in September 2024. If a CME like this was aimed at the Moon, the intense energy it carried could damage spacecraft electronics and even cause severe radiation sickness in astronauts. NOAA/NASA NOAA’s Space Weather Follow-On (SWFO) program sustains their space weather observations and measurements. NOAA’s CCOR-1 flew on the GOES-19 spacecraft and provides crucial near-real-time CME data. The CCOR-2 instrument will fly on SWFO-L1. Other missions include SOHO, a long-running collaboration between NASA and the European Space Agency, and HERMES, a NASA heliophysics instrument intended for the Lunar Gateway that will orbit the Moon.
      NASA’s Moon to Mars Space Weather Analysis Office (M2M SWAO) also conducts real-time space weather assessments. These support new capabilities for understanding space weather impacts on NASA exploration activities, including on the Moon.
      The Moon as a Laboratory
      A big part of the reason we want to go back to the Moon is the amazing level of information we can learn about the history of the Solar System. “Any object in our solar system doesn’t just exist in isolation,” explains Prabal Saxena, a Research Space Scientist in the Planetary Geology, Geophysics & Geochemistry Lab at NASA’s Goddard Space Flight Center. “It is constantly interacting with meteorites and meteors. That’s why you see a lot of the impact creators on the Moon. But it is also constantly interacting with the Sun.” This can come from the solar wind, CMEs, and other forms of solar energy hitting the Moon’s barren surface.
      Pictured is the Lunar Swirl Reiner Gamma, a geological feature on the surface of the moon. In areas that are magnetically protected, the ground stays relatively bright. Just outside of the shielded regions, radiation-induced chemical reactions darken the landscape, effectively “sunburning” the lunar surface. NASA/GSFC/Arizona State University Saxena points out that the Moon’s relative lack of a magnetosphere means that Lunar surface material effectively traps evidence of the past habits of the Sun. “A lot of the energetic particles that we would otherwise see deflected by Earth’s magnetosphere and atmosphere are impacting the surface of the Moon. So you can actually trace back what the history of the Sun might be.”
      He compares this to scientists taking ice cores to get a glimpse into Earth’s atmospheric history. With everything from evidence of the prehistoric solar atmosphere to information on how the Sun affects water on the lunar surface locked in rocks left largely untouched for millions of years, it is clear why NASA wants to go back and have another look around.
      Going Back
      But it is still important to keep an eye on the potential dangers to explorers both metallic and organic. In an interview, Lennard Fisk, former NASA Associate Administrator for Space Science and Applications, described a conversation he had with Neil Armstrong. More than anything else during Apollo 11, Armstrong was afraid of a solar flare. He knew he could depend on his spacecraft and crewmates. But space weather was an uncontrollable variable.
      We had a different understanding of space weather in 1969. Space radiation, including the solar wind, was a new discovery back then. But research done in those early days helped make breakthroughs still paying off today, and we are building upon these discoveries with new missions that continue to advance our knowledge of the Sun and the rest of our solar system.
      Additional Resources
      Lesson Plans & Educator Guides
      NASA Helio Club
      Study Unit
      Six lessons created for a middle-school audience to introduce basic heliophysics concepts to learners.


      Space Weather Math
      Hands-on activities with embedded math problems that explore the causes and effects of space weather.


      “Solar Storms and You” Educator Guide
      A downloadable educator guide with a variety of activities on the science of solar storms for learners grades 5-8.


      Interactive Resources
      Magnetic Earth
      Interactive Resource
      An animation with information on Earth’s magnetic field and its role in creating northern lights, and an interactive activity allowing students to experiment with magnetism.


      Student HelioViewer:
      Solar Data Interactive
      A student-friendly interactive with accessible NASA data about the Sun and its features, including solar flares, magnetic fields, sunspots, and Coronal Mass Ejections (CMEs).


      Webinars & Slide Decks
      What is Space
      Weather Video
      This approximately 3-minute video summarizes space weather and explains its effects on the rest of the Solar System.


      Science Update: Space Weather on Our
      Approach to Solar Max
      A webinar about the solar storm on May 10th, 2024, which led to auroras being visible across North America.


      Astronaut Dr. John
      Phillips Discusses
      Space Radiation
      Dr. John Phillips, NASA astronaut and space plasma physicist, talks about his work and personal experience with space radiation on the Space Weather Living History podcast.


      Dr. Lennard Fisk
      Discusses Heliophysics History at NASA
      Former Associate Administrator Dr. Lennard Fisk recounts the evolution of the Heliophysics Division at NASA.


      View the full article
    • By European Space Agency
      Week in images: 28 July - 1 August 2025
      Discover our week through the lens
      View the full article
    • By European Space Agency
      Week in images: 21-25 July 2025
      Discover our week through the lens
      View the full article
    • By European Space Agency
      Week in images: 14-18 July 2025
      Discover our week through the lens
      View the full article
  • Check out these Videos

×
×
  • Create New...