Jump to content

Recommended Posts

  • Publishers
Posted
Saturn and its rings against the blackness of space. Saturn is a pale beige, with slightly varying stripes. At the top is a sliver of blue light.
NASA/JPL/Space Science Institute

The Cassini-Huygens spacecraft captured this last “eyeful” of Saturn and its rings on March 27, 2004, as it continued its way to orbit insertion. This natural color image shows the color variations between atmospheric bands and features in the southern hemisphere of Saturn, subtle color differences across the planet’s middle B ring, as well as a bright blue sliver of light in the northern hemisphere – sunlight passing through the Cassini Division in Saturn’s rings and being scattered by the cloud-free upper atmosphere.

Cassini-Huygens, at 12,593 pounds one of the heaviest planetary probes ever, was launched on Oct. 15, 1997, on a Titan IVB/Centaur rocket from Cape Canaveral Air Force Station in Florida. Although that was the most powerful expendable launch vehicle available, it wasn’t powerful enough to send the massive Cassini-Huygens on a direct path to Saturn. Instead, the spacecraft relied on several gravity assist maneuvers to achieve the required velocity to reach the ringed planet. This seven-year journey took it past Venus twice, the Earth once, and Jupiter once, gaining more velocity with each flyby for the final trip to Saturn.

On July 1, 2004, with the Huygens lander still attached, Cassini fired its main engine for 96 minutes and entered an elliptical orbit around Saturn, becoming the first spacecraft to do so. Thus began an incredible 13-year in-depth exploration of the planet, its rings and its satellites, with scores of remarkable discoveries.

The Cassini mission ended on Saturn in 2015, when operators deliberately plunged the spacecraft into the planet to ensure Saturn’s moons remain pristine for future exploration.

Image Credit: NASA/JPL/Space Science Institute

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      In the sparsely populated Kimberley region of Western Australia, jagged landforms reach like fingers into the turquoise-blue ocean waters. Along the coastline north of Derby, they used to reach even farther. But rising sea levels submerged part of the coastal landscape, giving rise to hundreds of islands and low-lying reefs that compose the Buccaneer Archipelago.NASA/Michala Garrison; U.S. Geological Survey The Operational Land Imager on Landsat 9 captured this image of Buccaneer Archipelago on June 11, 2025. The scene encapsulates the striking interactions between land and water in the area where King Sound opens to the Indian Ocean.
      The powerful tidal currents stir up sediment in shallow areas, producing the beautiful turquoise swirls visible in this image. This power, however, can be hazardous to seafarers and divers as water rips through the archipelago’s constricted passages. One infamous place of turbulence, known as “Hell’s Gate,” lies in the passage between Gerald Peninsula and Muddle Islands.
      Learn more about this archipelago in Western Australia.
      Text credit: Kathryn Hansen
      Image credit: NASA/Michala Garrison; U.S. Geological Survey
      View the full article
    • By NASA
      An artist’s concept of the Starlab commercial space station.Starlab As NASA continues its transition toward a commercial low Earth orbit marketplace, an agency-supported commercial space station, Starlab, recently completed five development and design milestones. Starlab’s planned design consists of a service module and a habitat that will be launched to orbit on a single flight.
      The milestones, part of a NASA Space Act Agreement awarded in 2021, focused on reviews of Starlab’s preliminary design and safety, as well as spacecraft mockup and procurement plans. Each milestone provides NASA insight into the company’s development progress.
      “As we work toward the future of low Earth orbit, these milestones demonstrate Starlab’s dedication to building a commercial space station that can support human life and advance scientific research,” said Angela Hart, program manager for NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “Both the insight shared by Starlab and the expertise shared by NASA are critical to future mission success.”
      Starlab recently completed a preliminary design and safety review of its station’s architecture and systems. The company now will begin detailed design and hardware development, culminating in a critical design review later this year. Critical design reviews are an important step in a station’s development, assessing design maturity before proceeding with fabrication and assembly.
      An artist’s concept of the Starlab commercial space station.Starlab Starlab also has begun construction of a full-scale, high-fidelity mockup of the station. The mockup, which will be housed in the Space Vehicle Mockup Facility at NASA Johnson, will be used for human-in-the-loop testing, during which participants perform day-in-the-life walkthroughs and evaluate the interior design, crew training, procedure development, hardware checks, and in-flight issue resolution.
      In addition, Starlab completed reviews of the system design architecture, procurement plan, and Northrop Grumman Cygnus spacecraft docking system design. In 2023, Northrop Grumman teamed up with Starlab to provide cargo logistics services and engineering consultation to support the commercial space station. These reviews included design configuration updates of solar arrays, docking ports, crew quarters, and more.
      NASA supports the design and development of multiple commercial space stations through funded and unfunded agreements. Following the design and development phase, NASA plans to procure services from one or more companies as part of its strategy to become one of many customers for low Earth orbit stations.
      Learn more about commercial space stations at:
      www.nasa.gov/commercialspacestations
      Keep Exploring Discover More Topics
      Commercial Space Stations
      Low Earth Orbit Economy
      Commercial Space
      Humans In Space
      View the full article
    • By NASA
      Earth (ESD) Earth Explore Explore Earth Home Air Quality Climate Change Freshwater Life on Earth Severe Storms Snow and Ice The Global Ocean Science at Work Earth Science at Work Technology and Innovation Powering Business Multimedia Image Collections Videos Data For Researchers About Us 1 min read
      From Space to Soil: How NASA Sees Forests
      NASA uses satellite lidar technology to study Earth’s forests, key carbon sinks. The GEDI mission maps forest height and biomass from the International Space Station, while ICESat-2 fills polar data gaps. Together, they enable a first-of-its-kind global biomass map, guiding smarter forest conservation and carbon tracking.

      Original Video and Assets

      Share








      Details
      Last Updated Jun 17, 2025 Editor Earth Science Division Editorial Team Related Terms
      Earth Greenhouse Gases Video Series Explore More
      12 min read NASA’s Hurricane Science, Tech, Data Help American Communities
      With hurricane season underway, NASA is gearing up to produce cutting-edge research to bolster the…


      Article


      5 days ago
      1 min read Leaf Year: Seeing Plants in Hyperspectral Color
      PACE now allows scientists to see three different pigments in vegetation, helping scientists pinpoint even…


      Article


      2 weeks ago
      6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


      Article


      1 month ago
      Keep Exploring Discover More Topics From NASA
      Earth


      Your home. Our Mission. And the one planet that NASA studies more than any other.


      Explore Earth Science



      Earth Science in Action


      NASA’s unique vantage point helps us inform solutions to enhance decision-making, improve livelihoods, and protect our planet.


      Climate Change


      NASA is a global leader in studying Earth’s changing climate.

      View the full article
    • By NASA
      A black hole has blasted out a surprisingly powerful jet in the distant universe, according to a study from NASA’s Chandra X-ray Observatory.X-ray: NASA/CXC/CfA/J. Maithil et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk A black hole has blasted out a surprisingly powerful jet in the distant universe, according to a new study from NASA’s Chandra X-ray Observatory and discussed in our latest press release. This jet exists early enough in the cosmos that it is being illuminated by the leftover glow from the big bang itself.
      Astronomers used Chandra and the Karl G. Jansky Very Large Array (VLA) to study this black hole and its jet at a period they call “cosmic noon,” which occurred about three billion years after the universe began. During this time most galaxies and supermassive black holes were growing faster than at any other time during the history of the universe.
      The main graphic is an artist’s illustration showing material in a disk that is falling towards a supermassive black hole. A jet is blasting away from the black hole towards the upper right, as Chandra detected in the new study. The black hole is located 11.6 billion light-years from Earth when the cosmic microwave background (CMB), the leftover glow from the big bang, was much denser than it is now. As the electrons in the jets fly away from the black hole, they move through the sea of CMB radiation and collide with microwave photons. These collisions boost the energy of the photons up into the X-ray band (purple and white), allowing them to be detected by Chandra even at this great distance, which is shown in the inset.
      Researchers, in fact, identified and then confirmed the existence of two different black holes with jets over 300,000 light-years long. The two black holes are 11.6 billion and 11.7 billion light-years away from Earth, respectively. Particles in one jet are moving at between 95% and 99% of the speed of light (called J1405+0415) and in the other at between 92% and 98% of the speed of light (J1610+1811). The jet from J1610+1811 is remarkably powerful, carrying roughly half as much energy as the intense light from hot gas orbiting the black hole.
      The team was able to detect these jets despite their great distances and small separation from the bright, growing supermassive black holes — known as “quasars” — because of Chandra’s sharp X-ray vision, and because the CMB was much denser then than it is now, enhancing the energy boost described above.
      When quasar jets approach the speed of light, Einstein’s theory of special relativity creates a dramatic brightening effect. Jets aimed toward Earth appear much brighter than those pointed away. The same brightness astronomers observe can come from vastly different combinations of speed and viewing angle. A jet racing at near-light speed but angled away from us can appear just as bright as a slower jet pointed directly at Earth.
      The researchers developed a novel statistical method that finally cracked this challenge of separating effects of speed and of viewing angle. Their approach recognizes a fundamental bias: astronomers are more likely to discover jets pointed toward Earth simply because relativistic effects make them appear brightest. They incorporated this bias using a modified probability distribution, which accounts for how jets oriented at different angles are detected in surveys.
      Their method works by first using the physics of how jet particles scatter the CMB to determine the relationship between jet speed and viewing angle. Then, instead of assuming all angles are equally likely, they apply the relativistic selection effect: jets beamed toward us (smaller angles) are overrepresented in our catalogs. By running ten thousand simulations that match this biased distribution to their physical model, they could finally determine the most probable viewing angles: about 9 degrees for J1405+0415 and 11 degrees for J1610+1811.
      These results were presented by Jaya Maithil (Center for Astrophysics | Harvard & Smithsonian) at the 246th meeting of the American Astronomical Society in Anchorage, AK, and are also being published in The Astrophysical Journal. A preprint is available here. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release is supported by an artist’s illustration of a jet blasting away from a supermassive black hole.
      The black hole sits near the center of the illustration. It resembles a black marble with a fine yellow outline. Surrounding the black hole is a swirling disk, resembling a dinner plate tilted to face our upper right. This disk comprises concentric rings of fiery swirls, dark orange near the outer edge, and bright yellow near the core.
      Shooting out of the black hole are two streaky beams of silver and pale violet. One bright beam shoots up toward our upper right, and a second somewhat dimmer beam shoots in the opposite direction, down toward our lower left. These beams are encircled by long, fine, corkscrewing lines that resemble stretched springs.
      This black hole is located 11.6 billion light-years from Earth, much earlier in the history of the universe. Near this black hole, the leftover glow from the big bang, known as the cosmic microwave background or CMB, is much denser than it is now. As the electrons in the jets blast away from the black hole, they move through the sea of CMB radiation. The electrons boost the energies of the CMB light into the X-ray band, allowing the jets to be detected by Chandra, even at this great distance.
      Inset at our upper righthand corner is an X-ray image depicting this interaction. Here, a bright white circle is ringed with a band of glowing purple energy. The jet is the faint purple line shooting off that ring, aimed toward our upper right, with a blob of purple energy at its tip.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      NASA’s James Webb Space Telescope recently imaged the Sombrero Galaxy with its NIRCam (Near-Infrared Camera), which shows dust from the galaxy’s outer ring blocking stellar light from stars within the galaxy. In the central region of the galaxy, the roughly 2,000 globular clusters, or collections of hundreds of thousands of old stars held together by gravity, glow in the near-infrared. The Sombrero Galaxy is around 30 million light-years from Earth in the constellation Virgo. From Earth, we see this galaxy nearly “edge-on,” or from the side.NASA, ESA, CSA, STScI After capturing an image of the iconic Sombrero galaxy at mid-infrared wavelengths in late 2024, NASA’s James Webb Space Telescope has now followed up with an observation in the near-infrared. In the newest image, released on June 3, 2025, the Sombrero galaxy’s tightly packed group of stars at the galaxy’s center is illuminated while the dust in the outer edges of the disk blocks some stellar light. Studying galaxies like the Sombrero at different wavelengths, including the near-infrared and mid-infrared with Webb, as well as the visible with NASA’s Hubble Space Telescope, helps astronomers understand how this complex system of stars, dust, and gas formed and evolved, along with the interplay of that material.
      Learn more about the Sombrero galaxy and what this new view can tell us.
      Image credit:  NASA, ESA, CSA, STScI
      View the full article
  • Check out these Videos

×
×
  • Create New...