Jump to content

Recommended Posts

  • Publishers
Posted
9 Min Read

Behind the Scenes of a NASA ‘Moonwalk’ in the Arizona Desert

In the foreground, two people stand facing each other. Their arms are extended toward each other, and their fists meet at the knuckles. They are wearing big, bulky suits with lots of straps. They’re also wearing helmets and large, rectangular backpacks. The pair is standing in a large field with a mountain range in the background.
NASA astronauts Kate Rubins (left) and Andre Douglas.
Credits:
NASA/Josh Valcarcel 

NASA astronauts Kate Rubins and Andre Douglas recently performed four moonwalk simulations to help NASA prepare for its Artemis III mission. Due to launch in September 2026, Artemis III will land two, yet-to-be-selected, astronauts at the Moon’s South Pole for the first time.

Traveling to space requires immense preparation, not just for the astronauts, but for the hundreds of people who work in the background. That’s why Earth-based simulations are key. They allow spacesuit and tool designers to see their designs in action. Flight controllers who monitor spacecraft systems and the crew’s activities get to practice catching early signs of technical issues or threats to astronaut safety. And scientists use simulations to practice making geologic observations from afar through descriptions from astronauts.

Between May 13 and May 22, 2024, Rubins and Douglas trudged through northern Arizona’s San Francisco Volcanic Field, a geologically Moon-like destination shaped by millions of years of volcanic eruptions. There, they made observations of the soil and rocks around them and collected samples. After the moonwalks, the astronauts tested technology that could be used on Artemis missions, including a heads-up display that uses augmented reality to help with navigation, and lighting beacons that could help guide a crew back to a lunar lander.

Dozens of engineers and scientists came along with Rubins and Douglas. Some were in the field alongside the crew. Others joined remotely from a mock mission control center at NASA’s Johnson Space Center in Houston in a more realistic imitation of what it’ll take to work with a crew that’s some 240,000 miles away on the lunar surface.  

Here’s a look behind the scenes of a “moonwalk.”

My experience in Arizona was incredible! I worked with several teams, explored an exotic landscape, and got a taste of what it’s like to be on a mission with a crew. 

Andre Douglas

Andre Douglas

NASA Astronaut

Practice to Prepare

Two people sit side-by-side at a table inside a large tent. They’re wearing sun hats and t-shirts. The person on the left is talking and holding a pen in their left hand, while the person on the right is looking at them sideways and smiling. On the table in front of the pair is a jumble of papers, wires, an iPad and mobile phone propped up on stands, and large water bottles.

In this May 13, 2024, photo, Rubins (left), a molecular biologist who has done several expeditions to the space station, and Douglas, an engineer and member of the 2021 astronaut class, prepared for moonwalk rehearsals.  

In the foreground are two people standing side by side about four feet apart. The person on the left is leaning over a cart with large rubber wheels; the person, with their right side facing the camera is wearing large gloves, a t-shirt, a sun hat, and a large, rectangular backpack with antennas stretching out from the top. The person on the right, standing erect, is dressed similarly and has their back to the camera. The two are standing in a large, tan-colored field with small shrubs and mountains in the background. Framed between the two people is a brown and white cow, looking straight toward the camera. It is standing toward the background, between the people and the mountain range.

During the May 14 moonwalk, above, Rubins and Douglas worked to stay in the simulation mindset while a cow looked on. They wore backpacks loaded with equipment for lighting, communication, cameras, and power for those devices.

There are, of course, no cows on the Moon. But there is a region, called Marius Hills, that geologically resembles this Arizona volcanic field. Like the Arizona site, Marius Hills was shaped by ancient volcanic eruptions, so the composition of rocks at the two locations is similar.

The Arizona simulation site also resembles the Moon’s south polar region in the subtle changes in the size, abundance, and groupings of rocks that can be found there. Noting such faint differences in rocks on the Moon will help reveal the history of asteroid collisions, volcanic activity, and other events that shaped not only the Moon, but also Earth and the rest of our solar system.

“So this ‘landing site’ was a good analog for the types of small changes in regolith astronauts will look for at the lunar South Pole,” said Lauren Edgar, a geologist at the U.S. Geological Survey in Flagstaff, Ariz., who co-led the science team for the simulation.

To the delight of Edgar and her colleagues, Rubins and Douglas correctly identified faint differences in the Arizona rocks. But, despite their accomplishment, the day’s moonwalk had to be cut short due to strong winds. As with cows, there’s no wind on the mostly airless Moon. 

Science at the Table

jsc2024e034645.jpg?w=2048

Earth and planetary scientists at NASA Johnson followed the moonwalks via a live video and audio feed broadcast in the Science Evaluation Room, pictured above. These experts developed detailed plans for each simulated moonwalk and provided geology expertise to mission control.

Everyone in the room had a role. One person communicated information between the science team and the flight control team. Others monitored the crew’s science tasks to ensure the astronauts stayed on track.

A small group analyzed images of rocks, soil, and outcrops sent back by the crew on the ground in Arizona. The information they gleaned helped determine whether the crew’s science tasks for each traverse needed to change.

The decision to update tasks or not was made by a small group of experts from NASA and other institutions. Known as the “scrum,” this group of scientists, who are sitting around the table in the picture above, represented disciplines such as volcanology and mineralogy.

They evaluated the information coming in from the crew and analyses from the science team to quickly decide whether to change the day’s science tasks because of an unplanned discovery. Serving at the scrum table was a high-pressure job, as updating the plan to spend more time at one intriguing site, for instance, could mean giving up time at another.

The image shows a closeup of a map that’s pinkish in color with small, shaded areas. There are labels on the map, such as “krm” and “pu,” and dotted lines, small dots and squares and stars that mark locations on the map. A miniature lander model, smaller than the palm of the hand, is sitting at a location on the map labeled “Station 7.” Two miniature astronaut figures, one holding a U.S. flag, are standing a few inches to the right of the lander, and to the right of them sits a miniature rover.

The Arizona moonwalks also gave scientists an opportunity to test their skills at making geologic maps using data from spacecraft orbiting many miles above the surface. Such maps will identify scientifically valuable rocks and landforms at the South Pole to help NASA pick South Pole landing sites that have the most scientific value.

Scientists will use data from NASA’s Lunar Reconnaissance Orbiter to map the geology around the Artemis III landing site on the Moon. But to map the Arizona volcanic field, they relied on Earth satellite data. Then, to test whether their Arizona maps were accurate, a couple of scientists compared the crew’s locations along their traverses — self-reported based on the land features around them — to the geologic features identified on the maps.

Two people are sitting in a large vehicle with no roof, strapped into large, rectangular seats. The vehicle is sitting on brown soil. Spruce trees are in the background. The two people are looking at a box in front of them. Antennas stretch up from different parts of the vehicle.
Apollo 17 astronauts Eugene A. Cernan, wearing a green and yellow cap, and Harrison “Jack” Schmitt, during geology training at Cinder Lake Crater Field in Flagstaff, Ariz. In this 1972 image the NASA astronauts are driving a geologic rover, or “Grover,” which was a training replica of the roving vehicle they later drove on the Moon.

In the months leading up to the Arizona moonwalks, scientists taught Rubin and Douglas about geology, a discipline that’s key to deciphering the history of planets and moons. Geology training has been commonplace since the Apollo era of the 1960s and early ’70s. In fact, Apollo astronauts also trained in Arizona. These pioneer explorers spent hundreds of hours in the classroom and in the field learning geology. Artemis astronauts will have similarly intensive training. 

Operating in Moon-Like Conditions 

jsc2024e035656orig.jpg?w=2048

In the image above, Douglas stands to Rubins’ left reviewing procedures, while Rubins surveys instruments on the cart. Both are wearing 70-pound mockup planetary spacesuits that make moving, kneeling and grasping difficult, similar to how it will feel to do these activities on the Moon.

A NASA team member, not visible behind the cart in the foreground, is shining a spotlight toward the astronauts during a one-and-a-half-hour nighttime moonwalk simulation on May 16. The spotlight was used to imitate the lighting conditions of the Moon’s south polar region, where the Sun doesn’t rise and set as it does on Earth. Instead, it just moves across the horizon, skimming the surface like a flashlight lying on a table.

This visualization shows the unusual motions of Earth and the Sun as viewed from the South Pole of the Moon. Credit: NASA/Ernie Wright

The position of the Sun at the Moon has to do with the Moon’s 1.5-degree tilt on its axis. This slight tilt means neither of the Moon’s northern or southern hemispheres tips noticeably toward or away from the Sun throughout the year. In contrast, Earth’s 23.5-degree tilt allows the northern and southern hemispheres to lean closer (summer) or farther (winter) from the Sun depending on the time of year. Thus, the Sun appears higher in the sky during summer days than it does during winter days.

Compared to the daytime moonwalks, when the astronauts could easily see and describe the conditions around them, the crew was relatively quiet during the night expedition. With their small helmet lights, Rubins and Douglas could see just the area around their feet. But the duo tested supplemental portable lights and reported a big improvement in visibility of up to 20 feet around themselves.

Night simulations show us how tough it is for the astronauts to navigate in the dark. It’s pretty eye opening.

Cherie achilles

Cherie achilles

Mineralogist from NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who co-led the simulation science team.

People are sitting in a typical, brightly lit office-building room. Colorful posters line the walls. A large screen is in the top right corner, showing two side-by-side images of shapes that are hard to make out. People are sitting around tables, some are kneeling, looking either at the large screen or at the small computer screens in front of them.

The Science Evaluation Room during the nighttime moonwalk simulation on May 16. Scientists sit at their workstations while a screen at the front of the room presents live video and audio of the astronauts in the field.

A person, wearing glasses, a headset, and a bright-colored shirt is in the center of the image, pointing at a computer screen — one of several visible in the image. In the background is another person, in glasses and a dark-colored polo shirt, looking down at this laptop screen. In the bottom right corner of the image a third person, wearing glasses, is visible from the side. That person is resting his head on his left fist, looking in the direction of the pointing hand.

Engineers pictured above, in Houston’s mock mission control area, tested custom-designed software for managing moonwalks. One program automatically catalogs hours of audio and video footage, plus hundreds of pictures, collected during moonwalks. Another helps the team plan moonwalks, keep track of time and tasks, and manage limited life-support supplies such as oxygen. Such tracking and archiving will provide contextual data for generations of scientists and engineers. 

  

It’s important that we make software tools that allow flight controllers and scientists to have flexibility and creativity during moonwalks, while helping keep the crew safe.

Ben Feist

Ben Feist

Software engineer in NASA Johnson’s Astromaterials Research and Exploration Science division, pointing in the image above.

Learning a Common Language 

A person with their right hand on a computer mouse, is sitting at a table with five screens in a semicircle around them. The person, wearing a headset, is turned toward one of the screens with a serious, focused expression on their face. They are sitting in a bright office area, wearing a dark dress shirt and blazer.

The audio stream used by the Houston team to communicate during spacewalks is a dizzying cacophony of voices representing all the engineering and science roles of mission control. A well-trained mission control specialist can block out the noise and focus only on information they need to act on.

One of the goals of the simulations, then, was to train scientists how to do this. “On the science side, we’re the newbies here,” Achilles said.

During the Arizona moonwalks, scientists learned how to communicate their priorities succinctly and clearly to the flight control team, which then talked with the astronauts. If scientists needed to change the traverse plan to return to a site for more pictures, for instance, they had to rationalize the request to the flight director in charge. If the director approved, a designated person communicated the information to the crew. For this simulation, that person was NASA astronaut Jessica Watkins, pictured above, who’s  a geologist by training.  

NASA’s strict communication rules are meant to limit the distractions and hazards to astronauts during physically and intellectually demanding spacewalks. 

Coming Up Next 

In the weeks after the May moonwalk simulations, flight controllers and scientists have been debriefing and documenting their experiences. Next, they will revisit details like the design of the Science Evaluation Room. They’ll reconsider the roles and responsibilities of each team member and explore new tools or software upgrades to make their jobs more efficient. And at future simulations, still in the planning stages, they’ll do it all again, and again, and again, all to ensure that the real Artemis moonwalks — humanity’s first steps on the lunar surface in more than 50 years — will be perfectly choreographed.  

View More Images from the Recent Moonwalk Simulations

By Lonnie Shekhtman
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Will the Sun ever burn out?

      Well, the Sun, just like the stars we see at night, is a star. It’s a giant ball of super hot hydrogen.

      Gravity squeezes it in and it creates energy, which is what makes the Sun shine. Eventually, it will use up all of that hydrogen. But in the process, it’s creating helium. So it will then use the helium. And it will continue to use larger and larger elements until it can’t do this anymore.

      And when that happens, it will start to expand into a red giant about the size of the inner planets. Then it will shrink back down into a very strange star called a white dwarf — super hot, but not very bright and about the size of the Earth.

      But our Sun has a pretty long lifetime. It’s halfway through its 10-billion-year lifetime.

      So the Sun will never really burn out, but it will change and be a very, very different dim kind of star when it reaches the end of its normal life.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated May 15, 2025 Related Terms
      Science Mission Directorate Heliophysics Heliophysics Division The Solar System The Sun The Sun & Solar Physics Explore More
      4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
      In the heart of Alaska’s winter, where the night sky stretches endlessly and the aurora…
      Article 16 hours ago 6 min read NASA Observes First Visible-light Auroras at Mars
      On March 15, 2024, near the peak of the current solar cycle, the Sun produced…
      Article 19 hours ago 6 min read NASA’s Magellan Mission Reveals Possible Tectonic Activity on Venus
      Article 19 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section Science Science Activation Eclipses, Auroras, and the… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
      In the heart of Alaska’s winter, where the night sky stretches endlessly and the aurora dances across the sky in a display of ethereal beauty, nine undergraduate students from across the United States were about to embark on a transformative journey. These students had been active ‘NASA Partner Eclipse Ambassadors’ in their home communities, nine of more than 700 volunteers who shared the science and awe of the 2024 eclipse with hundreds of thousands of people across the country as part of the NASA Science Activation program’s Eclipse Ambassadors project. Now, these nine were chosen to participate in a once-in a lifetime experience as a part of the “Eclipses to Aurora” Winter Field School at the University of Alaska Fairbanks. Organized by the Astronomical Society of the Pacific and NASA’s Aurorasaurus Citizen Science project, supported by NASA, this program offered more than just lectures—it was an immersive experience into the wonders of heliophysics and the profound connections between the Sun and Earth.
      From January 4 to 11, 2025, the students explored the science behind the aurora through seminars on solar and space physics, hands-on experiments, and tours of cutting-edge research facilities like the Poker Flat Research Range. They also gained invaluable insight from Athabaskan elders, who shared local stories and star knowledge passed down through generations. As Feras recalled, “We attended multiple panels on solar and space physics, spoke to local elders on their connection to the auroras, and visited the Poker Flat Research Range to observe the stunning northern lights.”
      For many students, witnessing the aurora was not only a scientific milestone, but a deeply personal and emotional experience. One participant, Andrea, described it vividly: “I looked to the darkest horizon I could find to see my only constant dream fulfilled before my eyes, so slowly dancing and bending to cradle the stars. All I could do, with my hands frozen and tears falling, I began to dream again with my eyes wide open.” Another student, Kalid, reflected on the shared human moment: “Standing there under the vast Alaskan sky… we were all just people, looking up, waiting for something magical. The auroras didn’t care about our majors or our knowledge—they brought us together under the same sky.”
      These moments of wonder were mirrored by a deeper sense of purpose and transformation. “Over the course of the week, I had the incredible opportunity to explore auroras through lectures on solar physics, planetary auroras, and Indigenous star knowledge… and to reflect on these experiences through essays and presentations,” said Sophia. The Winter Field School was more than an academic endeavor—it was a celebration of science, culture, and shared human experience. It fostered not only understanding but unity and awe, reminding everyone involved of the profound interconnectedness of our universe.
      The impact of the program continues to resonate. For many students, that one aurora-lit week in Alaska became a turning point in the focus of their careers. Sophia has since been accepted into graduate school to pursue heliophysics. Vishvi, inspired by the intersection of science and society, will begin a program in medical physics at the University of Pennsylvania this fall. And Christy, moved by her time at the epicenter of aurora research, has applied to the Ph.D. program in Space Physics at the University of Alaska Fairbanks—the very institution that helped spark her journey. Their stories are powerful proof that the Winter Field School didn’t just teach—it awakened purpose, lit new paths, and left footprints on futures still unfolding.
      Eclipse Ambassadors is supported by NASA under cooperative agreement award number 80NSS22M0007 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Participants at the Winter Field School are enjoying the trip to Anchorage, AK. Andy Witteman Share








      Details
      Last Updated May 14, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Auroras Eclipses Opportunities For Students to Get Involved Explore More
      4 min read Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning


      Article


      1 day ago
      6 min read What NASA Is Learning from the Biggest Geomagnetic Storm in 20 Years


      Article


      5 days ago
      6 min read Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Credit: NASA NASA has selected Rocket Lab USA Inc. of Long Beach, California, to launch the agency’s Aspera mission, a SmallSat to study galaxy formation and evolution, providing new insights into how the universe works.
      The selection is part of NASA’s Venture-Class Acquisition of Dedicated and Rideshare (VADR) launch services contract. This contract allows the agency to make fixed-price indefinite-delivery/indefinite-quantity launch service task order awards during VADR’s five-year ordering period, with a maximum total contract value of $300 million.
      Through the observation of ultraviolet light, Aspera will examine hot gas in the space between galaxies, called the intergalactic medium. The mission will study the inflow and outflow of gas from galaxies, a process thought to contribute to star formation.
      Aspera is part of NASA’s Pioneers Program in the Astrophysics Division at NASA Headquarters in Washington, which funds compelling astrophysics science at a lower cost using small hardware and modest payloads. The principal investigator for Aspera is Carlos Vargas at the University of Arizona in Tucson. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contract.
      To learn more about NASA’s Aspera mission and the Pioneers Program, visit:
      https://go.nasa.gov/42U1Wkn
      -end-
      Joshua Finch / Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      joshua.a.finch@nasa.gov / tiernan.doyle@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
      Space Operations Mission Directorate Kennedy Space Center Launch Services Office Launch Services Program NASA Headquarters View the full article
    • By NASA
      6 min read
      NASA Observes First Visible-light Auroras at Mars
      On March 15, 2024, near the peak of the current solar cycle, the Sun produced a solar flare and an accompanying coronal mass ejection (CME), a massive explosion of gas and magnetic energy that carries with it large amounts of solar energetic particles. This solar activity led to stunning auroras across the solar system, including at Mars, where NASA’s Perseverance Mars rover made history by detecting them for the first time from the surface of another planet.
      The first visible-light image of green aurora on Mars (left), taken by the Mastcam-Z instrument on NASA’s Perseverance Mars rover. On the right is a comparison image of the night sky of Mars without aurora but featuring the Martian moon Deimos. The moonlit Martian night sky, lit up mostly by Mars’ nearer and larger moon Phobos (outside the frame) has a reddish-brown hue due to the dust in the atmosphere, so when green auroral light is added, the sky takes on a green-yellow tone, as seen in the left image. NASA/JPL-Caltech/ASU/MSSS/SSI “This exciting discovery opens up new possibilities for auroral research and confirms that auroras could be visible to future astronauts on Mars’ surface.” said Elise Knutsen, a postdoctoral researcher at the University of Oslo in Norway and lead author of the Science Advances study, which reported the detection.
      Picking the right aurora
      On Earth, auroras form when solar particles interact with the global magnetic field, funneling them to the poles where they collide with atmospheric gases and emit light. The most common color, green, is caused by excited oxygen atoms emitting light at a wavelength of 557.7 nanometers. For years, scientists have theorized that green light auroras could also exist on Mars but suggested they would be much fainter and harder to capture than the green auroras we see on Earth.
      Due to the Red Planet’s lack of a global magnetic field, Mars has different types of auroras than those we have on Earth. One of these is solar energetic particle (SEP) auroras, which NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) mission discovered in 2014. These occur when super-energetic particles from the Sun hit the Martian atmosphere, causing a reaction that makes the atmosphere glow across the whole night sky.
      While MAVEN had observed SEP auroras in ultraviolet light from orbit, this phenomenon had never been observed in visible light from the ground. Since SEPs typically occur during solar storms, which increase during solar maximum, Knutsen and her team set their sights on capturing visible images and spectra of SEP aurora from Mars’ surface at the peak of the Sun’s current solar cycle.
      Coordinating the picture-perfect moment
      Through modeling, Knutsen and her team determined the optimal angle for the Perseverance rover’s SuperCam spectrometer and Mastcam-Z camera to successfully observe the SEP aurora in visible light. With this observation strategy in place, it all came down to the timing and understanding of CMEs.
      “The trick was to pick a good CME, one that would accelerate and inject many charged particles into Mars’ atmosphere,” said Knutsen.
      That is where the teams at NASA’s Moon to Mars (M2M) Space Weather Analysis Office and the Community Coordinated Modeling Center (CCMC), both located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, came in. The M2M team provides real-time analysis of solar eruptions to the CCMC for initiating simulations of CMEs to determine if they might impact current NASA missions. When the simulations suggest potential impacts, the team sends out an alert.
      At the University of California, Berkeley, space physicist Christina Lee received an alert from the M2M office about the March 15, 2024, CME. Lee, a member of the MAVEN mission team who serves as the space weather lead, determined there was a notable solar storm heading toward the Red Planet,which could arrive in a few days. She immediately issued the Mars Space Weather Alert Notification to currently operating Mars missions.
      “This allows the science teams of Perseverance and MAVEN to anticipate impacts of interplanetary CMEs and the associated SEPs,” said Lee.
      “When we saw the strength of this one,” Knutsen said, “we estimated it could trigger aurora bright enough for our instruments to detect.”
      A few days later, the CME impacted Mars, providing a lightshow for the rover to capture, showing the aurora to be nearly uniform across the sky at an emission wavelength of exactly 557.7 nm. To confirm the presence of SEPs during the aurora observation, the team looked to MAVEN’s SEP instrument, which was additionally corroborated by data from ESA’s (European Space Agency) Mars Express mission. Data from both missions confirmed that the rover team had managed to successfully catch a glimpse of the phenomenon in the very narrow time window available.
      “This was a fantastic example of cross-mission coordination. We all worked together quickly to facilitate this observation and are thrilled to have finally gotten a sneak peek of what astronauts will be able to see there some day,” said Shannon Curry, MAVEN principal investigator and research scientist at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder (CU Boulder).
      The future of aurora on Mars
      By coordinating the Perseverance observations with measurements from MAVEN’s SEP instrument, the teams could help each other determine that the observed 557.7 nm emission came from solar energetic particles. Since this is the same emission line as the green aurora on Earth, it is likely that future Martian astronauts would be able to see this type of aurora.
      “Perseverance’s observations of the visible-light aurora confirm a new way to study these phenomena that’s complementary to what we can observe with our Mars orbiters,” said Katie Stack Morgan, acting project scientist for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “A better understanding of auroras and the conditions around Mars that lead to their formation are especially important as we prepare to send human explorers there safely.”
      On September 21, 2014, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars. The mission has produced a wealth of data about how Mars’ atmosphere responds to the Sun and solar wind NASA/JPL-Caltech More About Perseverance and MAVEN
      The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet. NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      The MAVEN mission, also part of NASA’s Mars Exploration Program portfolio, is led by LASP at CU Boulder. It’s managed by NASA’s Goddard Space Flight Center and was built and operated by Lockheed Martin Space, with navigation and network support from NASA’s JPL.

      By Willow Reed
      Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder
      Media Contact: 
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Share








      Details
      Last Updated May 14, 2025 Related Terms
      Mars Goddard Space Flight Center MAVEN (Mars Atmosphere and Volatile EvolutioN) View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      New research suggests vast surface features on Venus called coronae continue to be shaped by tectonic processes. Observations of these features from NASA’s Magellan mission include, clockwise from top left, Artemis Corona, Quetzalpetlatl Corona, Bahet Corona, and Aine Corona.NASA/JPL-Caltech Using archival data from the mission, launched in 1989, researchers have uncovered new evidence that tectonic activity may be deforming the planet’s surface.
      Vast, quasi-circular features on Venus’ surface may reveal that the planet has ongoing tectonics, according to new research based on data gathered more than 30 years ago by NASA’s Magellan mission. On Earth, the planet’s surface is continually renewed by the constant shifting and recycling of massive sections of crust, called tectonic plates, that float atop a viscous interior. Venus doesn’t have tectonic plates, but its surface is still being deformed by molten material from below.
      Seeking to better understand the underlying processes driving these deformations, the researchers studied a type of feature called a corona. Ranging in size from dozens to hundreds of miles across, a corona is most often thought to be the location where a plume of hot, buoyant material from the planet’s mantle rises, pushing against the lithosphere above. (The lithosphere includes the planet’s crust and the uppermost part of its mantle.) These structures are usually oval, with a concentric fracture system surrounding them. Hundreds of coronae are known to exist on Venus.
      Published in the journal Science Advances, the new study details newly discovered signs of activity at or beneath the surface shaping many of Venus’ coronae, features that may also provide a unique window into Earth’s past. The researchers found the evidence of this tectonic activity within data from NASA’s Magellan mission, which orbited Venus in the 1990s and gathered the most detailed gravity and topography data on the planet currently available.
      “Coronae are not found on Earth today; however, they may have existed when our planet was young and before plate tectonics had been established,” said the study’s lead author, Gael Cascioli, assistant research scientist at the University of Maryland, Baltimore County, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “By combining gravity and topography data, this research has provided a new and important insight into the possible subsurface processes currently shaping the surface of Venus.”
      This artist’s concept of the large Quetzalpetlatl Corona located in Venus’ southern hemisphere depicts active volcanism and a subduction zone, where the foreground crust plunges into the planet’s interior. A new study suggests coronae are the locations of several types of tectonic activity.NASA/JPL-Caltech/Peter Rubin As members of NASA’s forthcoming VERITAS (Venus Emissivity, Radio science, InSAR, Topography, and Spectroscopy) mission, Cascioli and his team are particularly interested in the high-resolution gravity data the spacecraft will provide. Study coauthor Erwan Mazarico, also at Goddard, will co-lead the VERITAS gravity experiment when the mission launches no earlier than 2031.
      Mystery Coronae
      Managed by NASA’s Jet Propulsion Laboratory in Southern California, Magellan used its radar system to see through Venus’ thick atmosphere and map the topography of its mountains and plains. Of the geological features the spacecraft mapped, coronae were perhaps the most enigmatic: It wasn’t clear how they formed. In the years since, scientists have found many coronae in locations where the planet’s lithosphere is thin and heat flow is high.
      “Coronae are abundant on Venus. They are very large features, and people have proposed different theories over the years as to how they formed,” said coauthor Anna Gülcher, Earth and planetary scientist at the University of Bern in Switzerland. “The most exciting thing for our study is that we can now say there are most likely various and ongoing active processes driving their formation. We believe these same processes may have occurred early in Earth’s history.”
      The researchers developed sophisticated 3D geodynamic models that demonstrate various formation scenarios for plume-induced coronae and compared them with the combined gravity and topography data from Magellan. The gravity data proved crucial in helping the researchers detect less dense, hot, and buoyant plumes under the surface — information that couldn’t be discerned from topography data alone. Of the 75 coronae studied, 52 appear to have buoyant mantle material beneath them that is likely driving tectonic processes.
      One key process is subduction: On Earth, it happens when the edge of one tectonic plate is driven beneath the adjacent plate. Friction between the plates can generate earthquakes, and as the old rocky material dives into the hot mantle, the rock melts and is recycled back to the surface via volcanic vents.
      These illustrations depict various types of tectonic activity thought to persist beneath Venus’ coronae. Lithospheric dripping and subduction are shown at top; below are and two scenarios where hot plume material rises and pushes against the lithosphere, potentially driving volcanism above it.Anna Gülcher, CC BY-NC On Venus, a different kind of subduction is thought to occur around the perimeter of some coronae. In this scenario, as a buoyant plume of hot rock in the mantle pushes upward into the lithosphere, surface material rises and spreads outward, colliding with surrounding surface material and pushing that material downward into the mantle.
      Another tectonic process known as lithospheric dripping could also be present, where dense accumulations of comparatively cool material sink from the lithosphere into the hot mantle. The researchers also identify several places where a third process may be taking place: A plume of molten rock beneath a thicker part of the lithosphere potentially drives volcanism above it.
      Deciphering Venus
      This work marks the latest instance of scientists returning to Magellan data to find that Venus exhibits geologic processes that are more Earth-like than originally thought. Recently, researchers were able to spot erupting volcanoes, including vast lava flows that vented from Maat Mons, Sif Mons, and Eistla Regio in radar images from the orbiter.
      While those images provided direct evidence of volcanic action, the authors of the new study will need sharper resolution to draw a complete picture about the tectonic processes driving corona formation. “The VERITAS gravity maps of Venus will boost the resolution by at least a factor of two to four, depending on location — a level of detail that could revolutionize our understanding of Venus’ geology and implications for early Earth,” said study coauthor Suzanne Smrekar, a planetary scientist at JPL and principal investigator for VERITAS.
      Managed by JPL, VERITAS will use a synthetic aperture radar to create 3D global maps and a near-infrared spectrometer to figure out what the surface of Venus is made of.  Using its radio tracking system, the spacecraft will also measure the planet’s gravitational field to determine the structure of Venus’ interior. All of these instruments will help pinpoint areas of activity on the surface.
      For more information about NASA’s VERITAS mission, visit:
      https://science.nasa.gov/mission/veritas/
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-068
      Share
      Details
      Last Updated May 14, 2025 Related Terms
      Magellan Jet Propulsion Laboratory Planetary Science Venus VERITAS (Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy) Explore More
      6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta
      Article 3 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
      Article 2 days ago 3 min read NASA Study Reveals Venus Crust Surprise
      New details about the crust on Venus include some surprises about the geology of Earth’s…
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...