Jump to content

NASA Opportunities Fuel Growth and Entrepreneurship for Bronco Space Club Students


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Two men adjust the lens on the Bronco Ember technology
The Bronco Space team assembles its Bronco Ember technology, which uses a short-wave infrared camera with AI to improve early wildfire detection.
Credit: Bronco Space

NASA’s public competitions can catalyze big changes – not just for the agency but also for participants. Bronco Space, the CubeSat laboratory at California State Polytechnic University in Pomona, California, matured more than just space technology as a result of winning funds from NASA’s TechLeap Prize competition. It grew from its roots in a broom closet to a newly built lab on campus, expanding its capacity to mature space technologies long into the future.

The TechLeap Prize seeks to rapidly identify and develop space technologies through a series of challenges that each address a specific technology need for NASA and the nation. In addition to a cash prize, winners receive access to a suborbital or orbital flight opportunity on a commercial flight platform. Bronco Space won $500,000 in the inaugural TechLeap Prize, Autonomous Observation Challenge, launched in 2021. The challenge sought small spacecraft technologies that could autonomously detect, locate, track, and collect data on transient events on Earth and beyond. The team, made up of both undergraduate and graduate students, developed and launched a wildfire detection system called Bronco Ember, which used a short-wave infrared camera with AI (artificial intelligence) to improve early wildfire detection.

Zachary Gaines was an undergraduate student when he participated in the first challenge through TechLeap with Bronco Space. He has since graduated and now supervises the lab at Cal Poly Pomona. Gaines notes how the prize gave the team flexibility to invest in their lab and expand the university’s technology development and maturation capabilities.

“Because TechLeap gave us prize money rather than a grant, we had the freedom to invest those funds,” said Gaines. “If we want to make a real-world impact, which we always want to do, we needed a real lab with equipment. Thanks to TechLeap, we now have space in an innovation village right outside of campus.”

In 2022, Gaines was also involved in Bronco Space’s second time participating in TechLeap as part of the first Nighttime Precision Landing Challenge. The competition sought sensing systems to detect surface hazards from at least 250 meters high and process the data in real-time to generate a terrain map suitable for a spacecraft to land safely in the dark. As one of three winners eligible to receive up to $650,000 each, Bronco Space developed a system using a light projector to create an initial geometry map for landing. The system then uses LIDAR (light detection and ranging) along with advances in computer vision, machine learning, robotics, and computing to generate a map that reconstructs lunar terrain.

A 3D image of a suburban neighborhood, with single family homes on a street that circles the neighborhood.
A demo of the 3D digital “twin” app created by PRISM Intelligence for NASA’s Entrepreneurs Challenge.
Credit: Bronco Space

From the experience with TechLeap, Gaines and other team members formed the small business Pegasus Intelligence and Space, now PRISM Intelligence, and participated in another challenge – NASA’s Entrepreneurs Challenge. This competition seeks the development and commercialization of lunar payloads and climate science through an entrepreneurial and venture lens to advance the Agency’s science exploration goals. The company’s technology, also called PRISM, is a 3D digital map of the world that uses AI to make the “twin” world searchable. The challenge encouraged Gaines and the PRISM team to bridge the gap between available data and consumer end-users. PRISM was a Round 2 winner of the challenge, receiving a share of the $1 million prize as well as exposure to external funders and investors.

Gaines traces the success of PRISM back to his first TechLeap experience: “The company wouldn’t have happened if we hadn’t done TechLeap. It helped me understand how to develop technologies for industry.”

The company and the university continue to secure NASA support. In December 2023, Cal Poly Pomona was selected to receive a two-year funded cooperative agreement through NASA’s University SmallSat Technology Partnership.

“When people invest in your ideas and continue to support them, they help you get smarter and increase your understanding of people’s needs,” said Gaines. “Building technologies with the goal of a real-world impact is really motivating.”

A young man sits on an A-frame ladder inspecting a large piece of technology, a sensing system developed by Bronco Space. The technology appears mostly silver with a pointed top with a silver sphere near the top and a gold-and-solver sphere near the bottom visible from the technology's framed exterior
Members of Bronco Space developed a sensing system that generates a map for precise spacecraft landing as part of NASA’s second TechLeap competition.
Credit: Bronco Space

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      GRX-810 is a new metal alloy developed by NASA for 3D printing parts that can withstand the extreme temperatures of rocket engines, allowing affordable printing of high-heat parts.NASA Until now, additive manufacturing, commonly known as 3D printing, of engine components was limited by the lack of affordable metal alloys that could withstand the extreme temperatures of spaceflight. Expensive metal alloys were the only option for 3D printing engine parts until NASA’s Glenn Research Center in Cleveland, Ohio, developed the GRX-810 alloy.

      The primary metals in the GRX-810 alloy include nickel, cobalt, and chromium. A ceramic oxide coating on the powdered metal particles increases its heat resistance and improves performance. Known as oxide dispersion strengthened (ODS) alloys, these powders were challenging to manufacture at a reasonable cost when the project started. 

      However, the advanced dispersion coating technique developed at Glenn employs resonant acoustic mixing. Rapid vibration is applied to a container filled with the metal powder and nano-oxide particles. The vibration evenly coats each metal particle with the oxide, making them inseparable. Even if a manufactured part is ground down to powder and reused, the next component will have the qualities of ODS.

      The benefits over common alloys are significant – GRX-10 could last up to a year at 2,000°F under stress loads that would crack any other affordable alloy within hours. Additionally, 3D printing parts using GRX-810 enables more complex shapes compared to metal parts manufactured with traditional methods.

      Elementum 3D, an Erie, Colorado-based company, produces GRX-810 for customers in quantities ranging from small batches to over a ton. The company has a co-exclusive license for the NASA-patented alloy and manufacturing process and continues to work with the agency under a Space Act Agreement to improve the material.

      “A material under stress or a heavy load at high temperature can start to deform and stretch almost like taffy,” said Jeremy Iten, chief technical officer with Elementum 3D. “Initial tests done on the large-scale production of our GRX-810 alloy showed a lifespan that’s twice as long as the small-batch material initially produced, and those were already fantastic.”

      Commercial space and other industries, including aviation, are testing GRX-810 for additional applications. For example, one Elementum 3D customer, Vectoflow, is testing a GRX-810 flow sensor. Flow sensors monitor the speed of gases flowing through a turbine, helping engineers optimize engine performance. However, these sensors can burn out in minutes due to extreme temperatures. Using GRX-810 flow sensors could improve airplane fuel efficiency, reduce emissions and hardware replacements.

      Working hand-in-hand with industry, NASA is driving technology developments that are mutually beneficial to the agency and America’s space economy. Learn more: https://spinoff.nasa.gov/
      Read More Share
      Details
      Last Updated Aug 15, 2025 Related Terms
      Technology Transfer & Spinoffs Glenn Research Center Spinoffs Technology Transfer Explore More
      2 min read NASA Seeks Industry Feedback on Fission Surface Power
      Article 22 hours ago 2 min read NASA Glenn Earns Commercial Invention of the Year Award
      Article 1 day ago 2 min read NASA Glenn Shoots for the Stars During WNBA All-Star Weekend
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Glenn Research Center
      3D-Printed Habitat Challenge
      View the full article
    • By NASA
      The crew of NASA’s SpaceX Crew-11 mission pose for a photo during a training session.Credit: SpaceX NASA astronauts Michael Finke and Zena Cardman will connect with students in Minnesota as they answer prerecorded science, technology, engineering, and mathematics (STEM) questions aboard the International Space Station.
      The Earth-to-space call will begin at 11 a.m. EDT on Wednesday, Aug. 20, and will stream live on the agency’s Learn With NASA YouTube channel.
      Media interested in covering the event must RSVP by 5 p.m., Tuesday, Aug. 19, to Elizabeth Ross at: 952-838-1340 or elizabeth.ross@pacer.org.
      The PACER center will host this event in Bloomington for students in their Tech for Teens program. The organization aims to improve educational opportunities and enhance the quality of life for children and young adults with disabilities and their families. The goal of this event is to help educate and inspire teens with disabilities to consider opportunities in STEM fields.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Golden Age explorers and ensuring the United States continues to lead in space exploration and discovery.
      See more information on NASA in-flight downlinks at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-511
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Aug 15, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Artemis ISS Research STEM Engagement at NASA View the full article
    • By NASA
      On January 7, 2021, NASA astronaut Kate Rubins serviced samples for Bacterial Adhesion and Corrosion. This investigation looked at how spaceflight affects the formation of microbial biofilms and tested a silver-based disinfectant.NASA This November marks a quarter century of continuous human presence aboard the International Space Station, which has served as a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including human missions to the Moon and Mars. To kick off the orbiting laboratory’s silver 25th anniversary countdown, here are a few silver-themed science investigations that have advanced research and space exploration.
      Antimicrobial properties
      Silver has been used for centuries to fight infection, and researchers use its unique properties to mitigate microbial growth aboard the space station. Over time, microbes form biofilms, sticky communities that can grow on surfaces and cause infection. In space, biofilms can become resistant to traditional cleaning products and could infect water treatment systems, damage equipment, and pose a health risk to astronauts. The Bacterial Adhesion and Corrosion investigation studied the bacterial genes that contribute to the formation of biofilms and tested whether a silver-based disinfectant could limit their growth.
      Another experiment focused on the production of silver nanoparticles aboard the space station. Silver nanoparticles have a bigger surface-to-volume ratio, allowing silver ions to come in contact with more microbes, making it a more effective antimicrobial tool to help protect crew from potential infection on future space missions. It also evaluated whether silver nanoparticles produced in space are more stable and uniform in size and shape, characteristics that could further enhance their effectiveness.
      Wearable tech
      Silver is a high-conductivity precious metal that is very malleable, making it a viable option for smart garments. NASA astronauts aboard the orbiting laboratory tested a wearable monitoring vest with silver-coated sensors to record heart rates, cardiac mechanics, and breathing patterns while they slept. This smart garment is lightweight and more comfortable, so it does not disturb sleep quality. The data collected provided valuable insight into improving astronauts’ sleep in space.
      Silver crystals
      In microgravity, there is no up or down, and weightlessness does not allow particles to settle, which impacts physical and chemical processes. Researchers use this unique microgravity environment to grow larger and more uniform crystals unaffected by the force of Earth’s gravity or the physical processes that would separate mixtures by density. The NanoRacks-COSMOS investigation used the environment aboard the station to grow and assess the 3D structure of silver nitrate crystals. The molecular structure of these superior silver nitrate crystals has applications in nanotechnology, such as creating silver nanowires for nanoscale electronics.
      Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      Share
      Details
      Last Updated Aug 14, 2025 Related Terms
      ISS Research Humans in Space International Space Station (ISS)
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA now is accepting proposals from student teams for a contest to design, build, and test rovers for Moon and Mars exploration through Sept. 15.
      Known as the Human Exploration Rover Challenge, student rovers should be capable of traversing a course while completing mission tasks. The challenge handbook has guidelines for remote-controlled and human-powered divisions.
      The cover of the HERC 2026 handbook, which is now available online. “Last year, we saw a lot of success with the debut of our remote-controlled division and the addition of middle school teams,” said Vemitra Alexander, the activity lead for the challenge at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We’re looking forward to building on both our remote-controlled and human-powered divisions with new challenges for the students, including rover automation.” 
      This year’s mission mimics future Artemis missions to the lunar surface. Teams are challenged to test samples of soil, water, and air from sites along a half-mile course that includes a simulated field of asteroid debris, boulders, erosion ruts, crevasses, and an ancient streambed. Human-powered rover teams will play the role of two astronauts in a lunar terrain vehicle and must use a custom-built task tool to manually collect samples needed for testing. Remote-controlled rover teams will act as a pressurized rover, and the rover itself will contain the tools necessary to collect and test samples onboard. 
      “NASA’s Human Exploration Rover Challenge creates opportunities for students to develop the skills they need to be successful STEM professionals,” said Alexander. “This challenge will help students see themselves in the mission and give them the hands-on experience needed to advance technology and become the workforce of tomorrow.” 
      Seventy-five teams comprised of more than 500 students participated in the agency’s 31st rover challenge in 2025. Participants represented 35 colleges and universities, 38 high schools, and two middle schools, across 20 states, Puerto Rico, and 16 nations around the world.
      The 32nd annual competition will culminate with an in-person event April 9-11, 2026, at the U.S. Space & Rocket Center near NASA Marshall.
      The rover challenge is one of NASA’s Artemis Student Challenges, reflecting the goals of the Artemis campaign, which seeks to explore the Moon for scientific discovery, technology advancement, and to learn how to live and work on another world as we prepare for human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics. 
      Since its inception in 1994, more than 15,000 students have participated in the rover challenge – with many former students now working at NASA or within the aerospace industry.    
      To learn more about HERC, visit: 
      https://www.nasa.gov/roverchallenge/
      Share
      Details
      Last Updated Aug 15, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      4 min read NASA IXPE’s ‘Heartbeat Black Hole’ Measurements Challenge Current Theories
      Article 3 days ago 6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
      NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
      Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      🔴 Live Now: 24/7 NASA Live Stream of Earth from Space (Seen From The ISS)
  • Check out these Videos

×
×
  • Create New...