Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      The European Space Agency’s Plato spacecraft has safely arrived at ESTEC, ESA’s technical heart in the Netherlands. There, engineers will complete the spacecraft by connecting its solar panels and sunshield, and carry out a series of critical tests to confirm that Plato is fit for launch and ready for its planet-hunting mission in space.
      View the full article
    • By NASA
      Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module on the International Space Station, setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. Joe Acaba Space missions rely on cryogenic fluids — extremely cold liquids like liquid hydrogen and oxygen — for both propulsion and life support systems. These fuels must be kept at ultra-low cryogenic temperatures to remain in liquid form; however, solar heating and other sources of heat increase the rate of evaporation of the liquid and cause the pressure in the storage tank to increase. Current storage methods require venting the cryogenic propellant to space to control the pressure in fuel tanks.
      NASA’s Zero Boil-Off Tank Noncondensables (ZBOT-NC) experiment is the continuation of Zero Boil-Off studies gathering crucial data to optimize fuel storage systems for space missions. The experiment will launch aboard Northrop Grumman’s 23rd resupply mission to the International Space Station.
      When Cold Fuel Gets Too Warm
      Even with multilayer insulation, heat unavoidably seeps into cryogenic fuel tanks from surrounding structures and the space environment, causing an increase in the liquid temperature and an associated increase in the evaporation rate. In turn, the pressure inside the tank increases. This process is called “boil-off” and the increase in tank pressure is referred to as “self-pressurization.”
      Venting excess gas to the environment or space when this process occurs is highly undesirable and becomes mission-critical on extended journeys. If crew members used current fuel storage methods for a years-long Mars expedition, all propellant might be lost to boil-off before the trip ends.
      NASA’s ZBOT experiments are investigating active pressure control methods to eliminate wasteful fuel venting. Specifically, active control through the use of jet mixing and other techniques are being evaluated and tested in the ZBOT series of experiments.
      The Pressure Control Problem
      ZBOT-NC further studies how noncondensable gases (NCGs) affect fuel tank behavior when present in spacecraft systems. NCGs don’t turn into liquid under the tank’s operating conditions and can affect tank pressure.
      The investigation, which is led out of Glenn Research Center, will operate inside the Microgravity Science Glovebox aboard the space station to gather data on how NCGs affect volatile liquid behavior in microgravity. It’s part of an effort to advance cryogenic fluid management technologies and help NASA better understand low-gravity fluid behavior.
      Researchers will measure pressure and temperature as they study how these gases change evaporation and condensation rates. Previous studies indicate the gases create barriers that could reduce a tank’s ability to maintain proper pressure control — a potentially serious issue for extended space missions.
      How this benefits space exploration
      The research directly supports Mars missions and other long-duration space travel by helping engineers design more efficient fuel storage systems and future space depots. The findings may also benefit scientific instruments on space telescopes and probes that rely on cryogenic fluids to maintain the extremely low temperatures needed for operation.
      How this benefits humanity
      The investigation could improve tank design models for medical, industrial, and energy production applications that depend on long-term cryogenic storage on Earth.
      Latest Content
      Stay up-to-date with the latest content from NASA as we explore the universe and discover more about our home planet.


      Zero Boil-Off Tank Noncondensables (ZBOT-NC)
      2 min read Principal Investigator(s): Overview: Zero Boil-Off Tank Noncondensables (ZBOT-NC) investigates how noncondensable gases interfere with fuel storage systems in microgravity. The…
      Topic
      What Are Quasicrystals, and Why Does NASA Study Them?
      3 min read For 40 years, finding new quasicrystals has been like searching for four-leaf clovers in a field. You’re lucky if you…
      Topic
      Growing Beyond Earth®
      2 min read Learn More Growing Beyond Earth student teams have helped select 5 of the 20 species that have been tested as…
      Topic
      1

      2

      3
      Next
      Biological & Physical Sciences Division

      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      What Would It Take to Say We Found Life?
      We call this the podium test. What would it take for you personally to confidently stand up in front of an international audience and make that claim? When you put it in that way, I think for a lot of scientists, the bar is really high.
      So of course, there would be obvious things, you know, a very clear signature of technology or a skeleton or something like that. But we think that a lot of the evidence that we might encounter first will be much more subtle. For example, chemical signs of life that have to be detected above a background of abiotic chemistry. And really, what we see might depend a lot on where we look.
      On Mars, for example, the long history of exploration there gives us a lot of context for what we might find. But we’re potentially talking about samples that are billions of years old in those cases, and on Earth, those kinds of samples, the evidence of life is often degraded and difficult to detect.
      On the ocean worlds of our outer solar system, so places like Jupiter’s moon Europa and Saturn’s moon Enceladus, there’s the tantalizing possibility of extant life, meaning life that’s still alive. But potentially we’re talking about exceedingly small amounts of samples that would have to be analyzed with a relatively limited amount of instrumentation that can be carried from Earth billions of miles away.
      And then for exoplanets, these are planets beyond our own solar system. Really, what we’re looking for there are very large magnitude signs of life that can be detectable through a telescope from many light-years away. So changes like the oxygenation of Earth’s atmosphere or changes in surface color.
      So any one of those things, if they rose to the suspicion of being evidence of life, would be really heavily scrutinized in a very sort of specific and custom way to that particular observation. But I think there are also some general principles that we can follow. And the first is just: Are we sure we’re seeing what we think we’re seeing? Many of these environments are not very well known to us, and so we need to convince ourselves that we’re actually seeing a clear signal that represents what we think it represents.
      Carl Sagan once said, “Life is the hypothesis of last resort,” meaning that we ought to work hard for such a claim to rule out alternative possibilities. So what are those possibilities? One is contamination. The spacecraft and the instruments that we use to look for evidence of life are built in an environment, Earth, that is full of life. And so we need to convince ourselves that what we’re seeing is not evidence of our own life, but evidence of indigenous life.
      If that’s the case, we should ask, should life of the type we’re seeing live there? And finally, we need to ask, is there any other way than life to make that thing, any of the possible abiotic processes that we know and even the ones that we don’t know? And as you can imagine, that will be quite a challenge.
      Once we have a piece of evidence in hand that we really do think represents evidence of life, now we can begin to develop hypotheses. For example, do we have separate independent lines of evidence that corroborate what we’ve seen and increase our confidence of life?
      Ultimately, all of this has to be looked at hard by the entire scientific community, and in that sense, I think the really operative word in our question is we. What does it take to say we found evidence of life? Because really, the answer, I think, depends on the full scientific community scrutinizing and skepticizing this observation to finally say that we scientists, we as a community and we as humanity found life.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Sep 10, 2025 Related Terms
      Astrobiology Mars Perseverance (Rover) Science & Research Science Mission Directorate Explore More
      6 min read NASA’s Webb Observes Immense Stellar Jet on Outskirts of Our Milky Way
      A blowtorch of seething gasses erupting from a volcanically growing monster star has been captured…
      Article 21 minutes ago 7 min read Life After Microgravity: Astronauts Reflect on Post-Flight Recovery 
      Article 1 day ago 6 min read NASA Webb Looks at Earth-Sized, Habitable-Zone Exoplanet TRAPPIST-1 e
      Scientists are in the midst of observing the exoplanet TRAPPIST-1 e with NASA’s James Webb…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA astronaut and Expedition 68 Flight Engineer Frank Rubio is pictured inside the cupola, the International Space Station’s “window to the world,” as the orbiting lab flew 263 miles above southeastern England on Oct. 1, 2022.NASA/Frank Rubio NASA astronaut Frank Rubio poses for a picture in the International Space Station’s cupola on Oct. 1, 2022.
      Rubio was selected as a NASA astronaut in 2017. He trained as a flight engineer and member of the Expedition 68 crew. Rubio, along with cosmonauts Sergey Prokopyev and Dmitry Petelin of Roscosmos, launched Sept. 21, 2022, on the Soyuz MS-22 spacecraft from the Baikonur Cosmodrome in Kazakhstan to the space station.
      While aboard the orbital laboratory, Rubio and his fellow crew members conducted dozens of scientific investigations and technology demonstrations, including growing tomato plants to study hydroponic and aeroponic techniques, participating in crew health experiments, and studying how materials react in microgravity. Research like this and other activity on the orbital outpost will inform long-duration missions like Artemis and future human expeditions to Mars.
      Rubio spent 371 days in space, surpassing NASA’s single spaceflight record for continuous days in space made by astronaut Mark Vande Hei. Rubio and his crewmates landed in Kazakhstan on Sept. 27, 2023. Rubio’s mission is the longest single spaceflight by a U.S. astronaut in history.
      Image credit: NASA/Frank Rubio
      View the full article
    • By European Space Agency
      Estonia marked its 10th anniversary in the European Space Agency alongside the plenary session of the European Interparliamentary Space Conference on 4 September.  
      View the full article
  • Check out these Videos

×
×
  • Create New...