Jump to content

NASA Celebrates 10 Years of Human Spaceflight’s NExT Pioneers


Recommended Posts

  • Publishers
Posted

Experienced spacewalkers, university students, flight controllers, and NASA team members at all stages of their career recently came together at Johnson Space Center’s Neutral Buoyancy Laboratory (NBL) for an anniversary celebration that looked to the future as much as the past. The Office of STEM Engagement’s Micro-g Neutral Buoyancy Experiment Design Teams (Micro-g NExT) marked a decade of inspiring the next generation of space explorers with four days of exciting hands-on experiences and events commemorating those who have shaped the annual challenge.

Students pose at NASA Johnson's neutral Buoyancy Laboratory with the 10-year anniversary logo of Micro0g NExT in front of them.
Students pose at NASA Johnson’s Neutral Buoyancy Laboratory (NBL) before beginning test week with their projects that will benefit future Artemis missions.
Credit: NASA/Bill Stafford

From June 2-5, NASA welcomed 17 student teams from 13 U.S. colleges and universities to the NBL for a once-in-a-lifetime opportunity. The 87 students spent months designing and building devices or tools that could support lunar surface spacewalks and future Artemis missions, earning a chance to test their unique prototypes at the NBL.

Teams chose from four design challenge options – create an anchoring device for a lunar flagpole, design a lunar mapbook, develop a lunar tool carrier, or create a target recognition system camera for post-landing search and rescue operations – and submitted technical proposals for Micro-g NExT staff to review in October 2023. The selected student teams were announced in November and introduced to their mentors in December. Those mentors provided continuous support and expertise as teams manufactured their prototypes, submitted their preliminary design review, and completed initial tests prior to traveling to Houston. Mentors represented Johnson organizations including the Flight Operations Directorate, Extravehicular Activity and Human Surface Mobility Program, Engineering, and the Safety and Mission Assurance Directorate.

Another familiar face at Johnson was involved in the challenge, as well: former NASA astronaut Steve Swanson, who was the Boise State University team’s faculty advisor. Swanson is a three-time spaceflight veteran who completed four spacewalks and logged and a total of 195 days in space, which enabled him to provide the students with valuable design insights.

swanson-micro-g-2.jpg?w=2048
Former NASA astronaut Steve Swanson with members of the Boise State University Micro-g NExT team at the NBL.
NASA/David DeHoyos

Once they arrived at the NBL, students received a pre-test briefing from Flight Director Rebecca Wingfield about best practices for communication from a mission control perspective. She also debriefed with teams to provide students with feedback that enhanced their learning experience and gave them a deeper understanding of their projects’ impact on the Artemis campaign.

A woman talks with a microphone in front of students at NASA's Neutral Buoyancy Laboratory in Houston, Texas.
NASA Flight Director Rebecca Wingfield conducts a pre-test briefing for Micro-g NExT teams.
Credit: NASA/James Blair

NASA astronaut Nicole Mann supported students in the test control room as they underwent testing and were in direct communication with the diver using their prototype in the pool. Mann also conducted a series of post-test debriefs with several teams to give them insight on how their designs were helpful and how they can improve.

An astronaut wearing a blue flight suit laughts with students in a control room with screens showing underwater divers test their tools.
NASA astronaut Nicole Mann in the NBL control room with Micro-g NExT participants.
NASA/James Blair

Students also had the opportunity to participate in a poster session at Johnson’s Teague Auditorium to showcase their products and the process from proposal to completion of testing. Artemis Student Challenge Awards were presented to top teams in three categories – Innovation, Pay it Forward (for community engagement and outreach), and Artemis Educator (for a team’s faculty advisor).

Students gather in a lobby with a large NASA logo in the back to talk to eachother about their projects.
Micro-g NExT poster session in the lobby of Johnson Space Center’s Teague Auditorium.
NASA/David DeHoyos

The whirlwind week kicked off with a reception for Micro-g NExT alumni who were recognized for their past efforts and dedication to space exploration. Certificates of appreciation were given to the program’s ‘pioneers’ – the NASA employees, contractors, and interns who helped to create Micro-g NExT 10 years ago. 

Several tools made by student teams during prior challenges were on display, including a zip-tie cutter designed by the Lone Star College-Cy Fair team in spring 2019 that was used aboard the International Space Station by European Space Agency astronaut Luca Parmitano. Members of that team shared their Micro-g NExT experience with reception attendees. “It gives students the best real-world experience and learning opportunity I have seen,” said James Philippi.

Students and staff also heard from several Micro-g NExT alumni during a Q&A panel. Panelists included Harriet Hunt, CRONUS flight controller trainee; Aaron Simpson, xEMU Portable Life Support System engineer intern; Alexis Vance, environmental systems flight controller; Kim Wright, electrical, mechanical, and external thermal systems engineer; and Sam Whitlock, spaceflight systems engineering intern at Axiom Space. Each shared how Micro-g NExT impacted them personally and professionally, underscoring the long-term value of participating in the challenge and the program’s ability to attract next-generation talent to the agency.

Five people sit at a table in front of students and particiapte in a Q&A session with a microphone.
Micro-g NExT alumni during a Q&A session with this year’s challenge participants and NASA team members.
NASA/James Blair

Adding to this legacy, two of the 2024 Micro-g NExT participants ended their challenge experience by starting work with NASA. Alana Falter from the University of Illinois-Urbana Champaign returned to NASA as a Pathways Intern, and Adrian Garcia from the University of Houston-Clear Lake returned as a contractor with Barrios Technology.

Another nod to the challenge’s impact was a special 10-year patch and logo designed by Justin Robert from the Michoud Assembly Facility through the NASA Spark challenge to commemorate the Micro-g NExT milestone.

10-year anniversary of Micro-g NExT logo.
10-year anniversary of Micro-g NExT logos.
Credit: NASA

“Student design challenges have been a critical pipeline for both NASA internship participants and preparing students to be successful in STEM careers,” said Jamie Semple, NASA activity manager for Micro-g NExT. “By participating in these activities, students have the opportunity to create a product that could be part of spaceflight history, all while building essential skills for the next step in their career.” Semple added, “We also see the challenge’s impact with former participants now becoming our Micro-g NExT challenge owners. These people are now leading the program into the future and continuing the legacy of creating leaders in the STEM workforce and for the NASA community.”

Reflecting on their experience, Smith Juback from Clemson University said working cooperatively with teammates was their favorite part of this design challenge. “We all had different ideas and ways to solve different problems and being able to incorporate everyone’s ideas together made us all smarter in the end,” he said. “I think we all learned so much individually about how to make and design a product, and we grew as people, students, and designers.”

Students from the University of Nebraska-Lincoln team said, “Working with astronauts in a professional environment like the Neutral Buoyancy Laboratory is about precision since time is so valuable and you have to make the most of it. Back at home, we have several hours to test our project and if it breaks it breaks. But in the NBL, we have 12 minutes to run through seven tests. This experience is something you can only get here at Micro-g NExT.”

A woman wearing a shirt that says "dice team" speaks into a control room microphone.
A Micro-g NExT participant directs testing from the NBL control room.
Credit: NASA

After four days of learning, testing, and networking, Micro-g NExT has reached a decade of providing greater knowledge and inspiration to youth across the country. As one of NASA’s Artemis student challenges, Micro-g NExT will continue to offer undergraduate students the opportunity to design and create mission-ready hardware to benefit the future of deep space exploration. Learn more about Micro-g NExT and other Artemis student challenges at https://stem.nasa.gov/artemis/.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)


      Human-rating is a critical certification process that validates the safety, reliability, and suitability of space systems—including orbiters, launch vehicles, rovers, spacesuits, habitats, and other crewed elements—for human use and interaction. This process ensures that systems are designed not only to protect human life but also to accommodate human needs and effectively integrate human capabilities. Human-rating requires that systems can tolerate failures, provide life-sustaining environments, and offer the crew sufficient control and situational awareness. NASA’s standards, such as a maximum allowable probability of loss of crew of 1 in 500 for ascent or descent, reflect the agency’s commitment to minimizing risk in human spaceflight.
      Over the decades, the concept of human-rating has evolved significantly. Early efforts focused primarily on basic crew survival and redundancy in critical systems. However, as missions became more complex and extended in duration, the scope of human-rating expanded to include human performance, health management, and the psychological and physiological demands of space travel. Today, human-rating is a multidisciplinary effort that integrates engineering, medical, and operational expertise to ensure that systems are not only survivable but also support optimal human function in extreme environments.
      Modern human-rating standards—such as NASA Procedural Requirements (NPR) 8705.2C, NASA-STD-8719.29 (Technical Requirements for Human-Rating), and NASA-STD-3001 (Human System Standards)—form the foundation of NASA’s approach. These documents emphasize risk-informed design, fault tolerance, human factors engineering, and the ability to recover from hazardous situations. They also provide detailed guidance on system safety, crew control interfaces, abort capabilities, and environmental health requirements. Together, they ensure that human spaceflight systems are designed to accommodate, utilize, and protect the crew throughout all mission phases.
      The human-rating certification process is rigorous and iterative. It involves extensive testing, validation, and verification of system performance, including simulations, flight tests, and integrated safety analyses. Certification also requires continuous monitoring, configuration control, and maintenance to ensure that systems remain in their certified state throughout their operational life. Importantly, human-rating is not just a checklist of technical requirements—it represents a cultural commitment to crew safety. It fosters a mindset in which every team member, from design engineers to mission operators, shares responsibility for protecting human life.
      To support program and project teams in applying these standards, NASA has conducted cross-reviews of documents like NASA-STD-3001 in relation to NASA-STD-8719.29. These assessments help identify relevant human health and performance requirements that should be considered during system design and development. While not a substitute for detailed applicability assessments, such reviews provide valuable guidance for integrating human-rating principles into mission planning and vehicle architecture.
      NASA/Sydney Bergen-Hill Read More About Human Rating Share
      Details
      Last Updated Aug 15, 2025 Related Terms
      General Artemis Commercial Space Humans in Space International Space Station (ISS) Office of the Chief Health and Medical Officer (OCHMO) Spacesuits Keep Exploring Discover Related Topics
      Human Spaceflight Standards
      The Human Spaceflight & Aviation Standards Team continually works with programs to provide the best standards and implementation documentation to…
      Technical Briefs
      Technical Briefs are available for standards that offer technical data, background, and application notes for vehicle developers and medical professionals.…
      Aerospace Medical Certification Standard
      This NASA Technical Standard provides medical requirements and clinical procedures designed to ensure crew health and safety and occupational longevity…
      Human Integration Design Handbook
      A companion document to NASA-STD-3001 Volume 2 is the Human Integration Design Handbook (HIDH). The HIDH is a compendium of…
      View the full article
    • By NASA
      The crew of NASA’s SpaceX Crew-11 mission pose for a photo during a training session.Credit: SpaceX NASA astronauts Michael Finke and Zena Cardman will connect with students in Minnesota as they answer prerecorded science, technology, engineering, and mathematics (STEM) questions aboard the International Space Station.
      The Earth-to-space call will begin at 11 a.m. EDT on Wednesday, Aug. 20, and will stream live on the agency’s Learn With NASA YouTube channel.
      Media interested in covering the event must RSVP by 5 p.m., Tuesday, Aug. 19, to Elizabeth Ross at: 952-838-1340 or elizabeth.ross@pacer.org.
      The PACER center will host this event in Bloomington for students in their Tech for Teens program. The organization aims to improve educational opportunities and enhance the quality of life for children and young adults with disabilities and their families. The goal of this event is to help educate and inspire teens with disabilities to consider opportunities in STEM fields.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Golden Age explorers and ensuring the United States continues to lead in space exploration and discovery.
      See more information on NASA in-flight downlinks at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-511
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Aug 15, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Artemis ISS Research STEM Engagement at NASA View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA now is accepting proposals from student teams for a contest to design, build, and test rovers for Moon and Mars exploration through Sept. 15.
      Known as the Human Exploration Rover Challenge, student rovers should be capable of traversing a course while completing mission tasks. The challenge handbook has guidelines for remote-controlled and human-powered divisions.
      The cover of the HERC 2026 handbook, which is now available online. “Last year, we saw a lot of success with the debut of our remote-controlled division and the addition of middle school teams,” said Vemitra Alexander, the activity lead for the challenge at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We’re looking forward to building on both our remote-controlled and human-powered divisions with new challenges for the students, including rover automation.” 
      This year’s mission mimics future Artemis missions to the lunar surface. Teams are challenged to test samples of soil, water, and air from sites along a half-mile course that includes a simulated field of asteroid debris, boulders, erosion ruts, crevasses, and an ancient streambed. Human-powered rover teams will play the role of two astronauts in a lunar terrain vehicle and must use a custom-built task tool to manually collect samples needed for testing. Remote-controlled rover teams will act as a pressurized rover, and the rover itself will contain the tools necessary to collect and test samples onboard. 
      “NASA’s Human Exploration Rover Challenge creates opportunities for students to develop the skills they need to be successful STEM professionals,” said Alexander. “This challenge will help students see themselves in the mission and give them the hands-on experience needed to advance technology and become the workforce of tomorrow.” 
      Seventy-five teams comprised of more than 500 students participated in the agency’s 31st rover challenge in 2025. Participants represented 35 colleges and universities, 38 high schools, and two middle schools, across 20 states, Puerto Rico, and 16 nations around the world.
      The 32nd annual competition will culminate with an in-person event April 9-11, 2026, at the U.S. Space & Rocket Center near NASA Marshall.
      The rover challenge is one of NASA’s Artemis Student Challenges, reflecting the goals of the Artemis campaign, which seeks to explore the Moon for scientific discovery, technology advancement, and to learn how to live and work on another world as we prepare for human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics. 
      Since its inception in 1994, more than 15,000 students have participated in the rover challenge – with many former students now working at NASA or within the aerospace industry.    
      To learn more about HERC, visit: 
      https://www.nasa.gov/roverchallenge/
      Share
      Details
      Last Updated Aug 15, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      4 min read NASA IXPE’s ‘Heartbeat Black Hole’ Measurements Challenge Current Theories
      Article 3 days ago 6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
      NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
      Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Credit: NASA
      As part of the agency’s initiative to return humanity to the Moon and eventually send the first astronaut – an American – to Mars, NASA is surveying industry for interest and feedback on a fission surface power system, through a Request for Information issued Thursday.
      Earlier this month, NASA declared its intent to put a nuclear reactor on the Moon by the mid-2030s to support lunar exploration, provide power generation on Mars, and strengthen national security in space.
      “Today’s call for industry input is an important step toward engaging the commercial space industry in powering the lunar economy and enabling future human exploration on Mars,” said Steve Sinacore, Fission Surface Power program executive at NASA’s Glenn Research Center in Cleveland. “Developing a safe, reliable, and efficient power supply is key to unlocking the future of human space exploration and ensuring America retains its dominance in space.”
      Building on its previous work, NASA will work with industry to design a fission surface power system that would provide at least 100 kilowatts of electrical power, have a mass allocation of less than 15 metric tons, and use a closed Brayton cycle power conversion system, which converts heat to electricity.
      NASA’s new Fission Surface Power effort builds on more than 60 years of agency experience in exploration technology. In 2022, NASA awarded three contracts for fission surface power system concepts for the Moon. In addition, NASA has used nuclear power sources in spacecraft and rovers over the years.
      The size, weight, and power capability of fission systems make them an effective continuous power supply regardless of location. Additionally, a nuclear reactor could be placed in lunar regions where sunlight cannot reach and could sustain nights on the Moon which can last more than 14 Earth days near the poles.
      Nuclear power is a key element for NASA’s Artemis missions and supporting a robust lunar economy. The Request for Information invites innovators to contribute to this effort, allowing NASA to access industry expertise and bolstering American ingenuity.
      Responses to the Request for Information are due Thursday, Aug. 21, and could be used to finalize a potential opportunity later this year.
      The Fission Surface Power effort is managed through NASA Glenn. The power system development is funded by the agency’s Exploration Systems Development Mission Directorate Moon to Mars Program.
      Share
      Details
      Last Updated Aug 14, 2025 LocationNASA Headquarters Related Terms
      Glenn Research Center Exploration Systems Development Mission Directorate Fission Surface Power View the full article
    • By NASA
      Credit: NASA NASA has selected KBR Wyle Services, LLC of Fulton, Maryland, to provide services to the Human Health and Performance Directorate at the agency’s Johnson Space Center in Houston, which focuses on astronaut health, occupational health, and research that could help mitigate health risks for future human spaceflight missions.
      The Human Health and Performance Contract 2 is a follow-on single-award indefinite-delivery/indefinite-quantity contract that begins its five-year period of performance on Nov. 1, with two possible option periods that could extend it through 2035. The total estimated value of the base period plus the optional periods is $3.6 billion. Leidos, Inc. of Reston, Virginia, is a subcontractor.
      The contract will acquire support services for several programs, primarily at NASA Johnson. This includes the Human Research Program, International Space Station Program, Commercial Crew Program, Artemis campaign, and more. Services include ensuring crew health, safety, and performance; providing occupational health services; and conducting research into mitigating risks to the health, safety, and performance of future spaceflight crews.
      The Human Health and Performance Directorate leads the global spaceflight community in protecting astronaut health and enabling human mission performance. Its vision focuses on humans living, working, and thriving in space, on the Moon and on to Mars, and its mission is to lead the global spaceflight community in protecting astronaut health and enabling human mission performance.
      For more information about NASA and agency programs, visit:
      https://www.nasa.gov
      –end–
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Victoria Segovia
      Johnson Space Center, Houston
      281-483-5111
      victoria.segovia@nasa.gov
      Share
      Details
      Last Updated Aug 11, 2025 LocationNASA Headquarters Related Terms
      Johnson Space Center Human Health and Performance NASA Centers & Facilities View the full article
  • Check out these Videos

×
×
  • Create New...