Jump to content

Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere


Recommended Posts

  • Publishers
Posted

5 min read

Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere

Who knew Earth’s upper atmosphere was like alphabet soup?

NASA’s Global-scale Observations of the Limb and Disk (GOLD) mission has revealed unexpected C- and X-shaped formations in an electrified layer of gas high above our heads called the ionosphere.

While these alphabetical shapes have been observed before, GOLD sees them more clearly than other instruments have and is now finding them where and when scientists didn’t expect. Their surprise appearances prove that we have more to learn about the ionosphere and its effects on communication and navigation signals that pass through it.

Earth’s Dynamic Interface to Space

Extending some 50 to 400 miles overhead, the ionosphere becomes electrically charged during the daytime when sunlight strikes our planet and its energy knocks electrons off atoms and molecules. This creates a soup of charged particles, known as plasma, that allows radio signals to travel over long distances.

Near Earth’s magnetic equator, charged particles are funneled upward and outward along magnetic field lines, creating two dense bands of particles north and south of the equator that scientists call crests. As night falls and the Sun’s energy fades, low-density pockets in the plasma, called bubbles, can form in the ionosphere. Because of their varying density, the crests and bubbles can interfere with radio and GPS signals.

Under the combined influence of gravity and Earth’s electric and magnetic fields, charged particles in the ionosphere flow upward and outward away from Earth’s magnetic equator, forming two dense bands, or crests, to the north and south of the equator. Learn more here.
NASA’s Scientific Visualization Studio

While previous observations provided brief glimpses of crests and bubbles in the ionosphere, GOLD monitors these features over extended periods of time. That’s thanks to its geostationary orbit, which circles our planet at the same rate Earth rotates, allowing GOLD to hover over the Western Hemisphere.

Unexpected X-Shaped Crests from Quiet Conditions

The ionosphere is sensitive to disturbances from both space and terrestrial weather. GOLD has previously revealed that after a solar storm or huge volcanic eruption, the crests in the ionosphere can merge to form an X shape. But now, GOLD has seen an X shape form on multiple occasions when there were no such disturbances — what scientists refer to as “quiet time.”

“Earlier reports of merging were only during geomagnetically disturbed conditions — it is an unexpected feature during geomagnetic quiet conditions,” said Fazlul Laskar, of the University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP), who is the lead author of a paper about this discovery published in April 2024 by the Journal of Geophysical Research: Space Physics.

x-fig1c.jpg?w=987
Observations from NASA’s GOLD mission shows charged particles in the ionosphere forming an X shape on Oct. 7, 2019. (The colors indicate the intensity of the ultraviolet light emitted, with yellow and white indicating the strongest emission, or highest ionospheric density.)
F. Laskar et al.

These unexpected appearances tell scientists that something else must be involved in forming these X shapes. Computer models suggest that the X could develop when changes in the lower atmosphere pull plasma downward.

“The X is odd because it implies that there are far more localized driving factors,” said Jeffrey Klenzing, a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who studies the ionosphere. “This is expected during the extreme events, but seeing it during ‘quiet time’ suggests that the lower atmosphere activity is significantly driving the ionospheric structure.”

This visualization shows a bright, horizontal X-shaped feature appearing in the ionosphere on Oct. 7, 2019, as observed by NASA’s GOLD mission. Each of GOLD’s observations cover about 45 degrees in longitude and proceed from east to west, alternating between the Northern and Southern hemispheres. Rayleigh is a unit for measuring the amount of light (in this case, ultraviolet light).
NASA’s Scientific Visualization Studio

C-Shaped Bubbles Point to Strong Turbulence

GOLD has also found surprising C-shaped plasma bubbles that point to other puzzling dynamics influencing the ionosphere.

Most plasma bubbles appear long and straight, forming along magnetic field lines. But some bubbles are curved into C shapes and reverse-C shapes, which scientists think are shaped by terrestrial winds. Computer models suggest a C-shape forms if winds increase with altitude at the magnetic equator and a reverse-C forms if the winds decrease with altitude.

“It’s a little like a tree growing in a windy area,” explains Klenzing. “If the winds are typically to the east, the tree starts to tilt and grow in that direction.”

In a paper published in November 2023 in the Journal of Geophysical Research: Space Physics, LASP scientist Deepak Karan and colleagues report that GOLD has observed C-shaped and reverse-C-shaped plasma bubbles appearing surprisingly close together — as close as about 400 miles apart (roughly the distance between Baltimore and Boston).

c-and-inverted-c-shape-epb.jpg?w=2048
Images from NASA’s GOLD mission show C-shaped and reverse-C-shaped plasma bubbles appearing close together in the ionosphere on Oct. 12, 2020, and Dec. 26, 2021.
D. Karan et al.

“Within that close proximity, these two opposite-shaped plasma bubbles had never been thought of, never been imaged,” said Karan. To have wind patterns change course in such a small area, Karan thinks some sort of strong turbulence — like a vortex, wind shear, or tornado-like activity — is likely at play in the atmosphere.

“The fact that we have very different shapes of bubbles this close together tells us that the dynamics of the atmosphere is more complex than we expected,” Klenzing said.

These close pairings appear to be rare, with only two instances recorded by GOLD so far. Yet because these features can disrupt critical communication and navigation technology, “It’s really important to find out why this is happening,” Karan said. “If a vortex or a very strong shear in the plasma has happened, this will completely distort the plasma over that region. Signals will be lost completely with a strong disturbance like this.”

This visualization shows C-shaped and reverse-C-shaped plasma bubbles appearing close together in the ionosphere on Oct. 12, 2020, and Dec. 26, 2021, as observed by NASA’s GOLD mission. The bubbles appear as dark blue vertical features extending between two bright (dense) crests.
NASA’s Scientific Visualization Studio

Scientists hope GOLD’s continued observations, combined with those from other heliophysics missions, can help unlock these mysteries of the ionosphere and their effects on our lives.

By Vanessa Thomas
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      An artist’s concept of a supermassive black hole, a surrounding disk of material falling towards the black hole and a jet containing particles moving away at close to the speed of light. This black hole represents a recently-discovered quasar powered by a black hole. New Chandra observations indicate that the black hole is growing at a rate that exceeds the usual limit for black holes, called the Eddington Limit. Credit: NASA/CXC/SAO/M. WeissX-ray: NASA/CXC/INAF-Brera/L. Ighina et al.; Illustration: NASA/CXC/SAO/M. Weiss; Image Processing: NASA/CXC/SAO/N. Wolk A black hole is growing at one of the fastest rates ever recorded, according to a team of astronomers. This discovery from NASA’s Chandra X-ray Observatory may help explain how some black holes can reach enormous masses relatively quickly after the big bang.
      The black hole weighs about a billion times the mass of the Sun and is located about 12.8 billion light-years from Earth, meaning that astronomers are seeing it only 920 million years after the universe began. It is producing more X-rays than any other black hole seen in the first billion years of the universe.
      The black hole is powering what scientists call a quasar, an extremely bright object that outshines entire galaxies. The power source of this glowing monster is large amounts of matter funneling around and entering the black hole.
      While the same team discovered it two years ago, it took observations from Chandra in 2023 to discover what sets this quasar, RACS J0320-35, apart. The X-ray data reveal that this black hole appears to be growing at a rate that exceeds the normal limit for these objects.
      “It was a bit shocking to see this black hole growing by leaps and bounds,” said Luca Ighina of the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts, who led the study.
      When matter is pulled toward a black hole it is heated and produces intense radiation over a broad spectrum, including X-rays and optical light. This radiation creates pressure on the infalling material. When the rate of infalling matter reaches a critical value, the radiation pressure balances the black hole’s gravity, and matter cannot normally fall inwards any more rapidly. That maximum is referred to as the Eddington limit.
      Scientists think that black holes growing more slowly than the Eddington limit need to be born with masses of about 10,000 Suns or more so they can reach a billion solar masses within a billion years after the big bang — as has been observed in RACS J0320-35. A black hole with such a high birth mass could directly result from an exotic process: the collapse of a huge cloud of dense gas containing unusually low amounts of elements heavier than helium, conditions that may be extremely rare.
      If RACS J0320-35 is indeed growing at a high rate — estimated at 2.4 times the Eddington limit — and has done so for a sustained amount of time, its black hole could have started out in a more conventional way, with a mass less than a hundred Suns, caused by the implosion of a massive star.
      “By knowing the mass of the black hole and working out how quickly it’s growing, we’re able to work backward to estimate how massive it could have been at birth,” said co-author Alberto Moretti of INAF-Osservatorio Astronomico di Brera in Italy. “With this calculation we can now test different ideas on how black holes are born.”
      To figure out how fast this black hole is growing (between 300 and 3,000 Suns per year), the researchers compared theoretical models with the X-ray signature, or spectrum, from Chandra, which gives the amounts of X-rays at different energies. They found the Chandra spectrum closely matched what they expected from models of a black hole growing faster than the Eddington limit. Data from optical and infrared light also supports the interpretation that this black hole is packing on weight faster than the Eddington limit allows.
      “How did the universe create the first generation of black holes?” said co-author Thomas of Connor, also of the Center for Astrophysics. “This remains one of the biggest questions in astrophysics and this one object is helping us chase down the answer.”
      Another scientific mystery addressed by this result concerns the cause of jets of particles that move away from some black holes at close to the speed of light, as seen in RACS J0320-35. Jets like this are rare for quasars, which may mean that the rapid rate of growth of the black hole is somehow contributing to the creation of these jets.
      The quasar was previously discovered as part of a radio telescope survey using the Australian Square Kilometer Array Pathfinder, combined with optical data from the Dark Energy Camera, an instrument mounted on the Victor M. Blanco 4-meter Telescope at the Cerro Tololo Inter-American Observatory in Chile. The U.S. National Science Foundation National Optical-Infrared Astronomy Research Laboratory’s Gemini-South Telescope on Cerro Pachon, Chile was used to obtain the accurate distance of RACS J0320-35.
      A paper describing these results has been accepted for publication in The Astrophysical Journal and is available here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a quasar located 12.8 billion light-years from Earth, presented as an artist’s illustration and an X-ray image from NASA’s Chandra X-ray Observatory.
      In the artist’s illustration, the quasar, RACS J0320-35, sits at our upper left, filling the left side of the image. It resembles a spiraling, motion-blurred disk of orange, red, and yellow streaks. At the center of the disk, surrounded by a glowing, sparking, brilliant yellow light, is a black egg shape. This is a black hole, one of the fastest-growing black holes ever detected. The black hole is also shown in a small Chandra X-ray image inset at our upper right. In that depiction, the black hole appears as a white dot with an outer ring of neon purple.
      The artist’s illustration also highlights a jet of particles blasting away from the black hole at the center of the quasar. The streaked silver beam starts at the core of the distant quasar, near our upper left, and shoots down toward our lower right. The blurry beam of energetic particles appears to widen as it draws closer and exits the image.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Sep 18, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory Astrophysics Black Holes Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Marshall Astrophysics Marshall Space Flight Center Quasars Science & Research Supermassive Black Holes The Universe Explore More
      5 min read New NASA Mission to Reveal Earth’s Invisible ‘Halo’
      A new NASA mission will capture images of Earth’s invisible “halo,” the faint light given…
      Article 2 hours ago 5 min read NASA’s Hubble Sees White Dwarf Eating Piece of Pluto-Like Object
      In our nearby stellar neighborhood, a burned-out star is snacking on a fragment of a…
      Article 4 hours ago 4 min read NASA Artemis II Moon Rocket Ready to Fly Crew
      Article 21 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      The USSF and nine partner nations concluded Schriever Wargame 2025, capping a two-week wargame that tested strategies, evaluated future technologies and strengthened international cooperation in space.

      View the full article
    • By NASA
      NASA The Moon’s light is refracted by Earth’s atmosphere in this April 13, 2025, photograph from the International Space Station as it orbited into a sunset 264 miles above the border between Bolivia and Brazil in South America.
      Understanding the Moon helps us understand other planets, how they have evolved and the processes which have shaped their surfaces. It also helps us understand the influence the Moon has had on Earth, the record of the ancient Sun, and it serves as a platform to study the rest of the universe. By using the Moon as our closest testing ground for robotics and instrument systems, we can further human exploration to not only the Moon, but the rest of the solar system.
      Through Artemis missions, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars.
      Image credit: NASA
      View the full article
    • By European Space Agency
      The exoplanet TRAPPIST-1 d intrigues astronomers looking for possibly habitable worlds beyond our solar system because it is similar in size to Earth, rocky, and resides in an area around its star where liquid water on its surface is theoretically possible. But according to a new study using data from the NASA/ESA/CSA James Webb Space Telescope, it does not have an Earth-like atmosphere.
      View the full article
    • By European Space Agency
      Astronomers using the NASA/ESA/CSA James Webb Space Telescope have found strong evidence of a giant planet orbiting a star in the stellar system closest to our own Sun. At just 4 light-years away from Earth, the Alpha Centauri triple star system has long been a compelling target in the search for worlds beyond our solar system.
      View the full article
  • Check out these Videos

×
×
  • Create New...