Jump to content

40 Years Ago: STS-41D – First Space Shuttle Launch Pad Abort


Recommended Posts

  • Publishers
Posted

In 1983, NASA received delivery of Discovery, the third space qualified vehicle in the agency’s space shuttle fleet. During the launch attempt for the STS-41D mission on June 26, 1984, Discovery’s onboard computers halted the countdown four seconds before liftoff, and after two of its main engines had already ignited. The six astronauts safely egressed the orbiter. This first on-the-pad abort of the shuttle program required the vehicle’s return to its assembly building for replacement of the faulty engine that caused the shutdown. The resulting two-month delay caused a shuffling of the mission’s payloads, but Discovery finally lifted off on Aug. 30, and the astronauts completed a successful six-day mission, deploying three commercial satellites, testing a new solar array, and conducting a commercial biotechnology experiment.

Space shuttle Discovery rolls out of Rockwell’s Palmdale facility Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight Discovery arrives at NASA’s Kennedy Space Center in Florida
Left: Space shuttle Discovery rolls out of Rockwell’s Palmdale facility. Middle: Discovery atop the Shuttle Carrier Aircraft during the cross-country ferry flight. Right: Discovery arrives at NASA’s Kennedy Space Center in Florida.

Discovery rolled out of Rockwell International’s plant in Palmdale, California, on Oct. 16, 1983. Five of the six crew members assigned to its first flight attended the ceremony. Workers trucked Discovery overland from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB). Discovery arrived at NASA’s Kennedy Space Center (KSC) on Nov. 9 after a cross-country ferry flight from Edwards, following a two-day stopover at Vandenberg Air Force, now Space Force, Base in California, atop the Shuttle Carrier Aircraft, a modified Boeing 747. Discovery, named after several historical ships of exploration, incorporated manufacturing lessons learned from the first orbiters as well as through the use of more advanced materials. The new vehicle weighed nearly 8,000 pounds less than its sister ship Columbia and 700 pounds less than Challenger.

The STS-41D crew patch The STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry W. “Hank” Hartsfield, and Michael D. Coats; and Charles D. Walker, back row left, and Judith A. Resnik
Left: The STS-41D crew patch. Right: The STS-41D crew of R. Michael “Mike” Mullane, front row left, Steven A. Hawley, Henry W. “Hank” Hartsfield, and Michael D. Coats; and Charles D. Walker, back row left, and Judith A. Resnik.

To fly Discovery’s first flight, originally designated STS-12 and later renamed STS-41D, in February 1983 NASA assigned Commander Henry W. Hartsfield, a veteran of STS-4, and first-time flyers Pilot Michael L. Coats, and Mission Specialists R. Michael Mullane, Steven A. Hawley, and Judith A. Resnik, all from the 1978 class of astronauts. In May 1983, NASA announced the addition of Charles D. Walker, an employee of the McDonnell Douglas Corporation, to the crew, flying as the first commercial payload specialist. He would operate the company’s Continuous Flow Electrophoresis System (CFES) experiment. The mission’s primary payloads included the Leasat-1 (formerly known as Syncom IV-1) commercial communications satellite and OAST-1, three experiments from NASA’s Office of Aeronautics and Space Technology, including the Solar Array Experiment, a 105-foot long lightweight deployable and retractable solar array.

Workers in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida lift Discovery to mate it with its external tank and solid rocket boosters Initial rollout of Discovery from the VAB to Launch Pad 39A on May 19, 1984 The Flight Readiness Firing on June 2
Left: Workers in the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center in Florida lift Discovery to mate it with its external tank and solid rocket boosters. Middle: Initial rollout of Discovery from the VAB to Launch Pad 39A on May 19, 1984. Right: The Flight Readiness Firing on June 2.

The day after its arrival at KSC, workers towed Discovery from the SLF to the Orbiter Processing Facility (OPF) to being preparing it for its first space flight. Between Dec. 9, 1983, and Jan. 10, 1984, it entered temporary storage in the Vehicle Assembly Building (VAB) to allow postflight processing of Columbia in the OPF following STS-9. Workers returned Discovery to the OPF for final processing, towing it to the VAB on May 12 for mating with its External Tank (ET) and Solid Rocket Boosters (SRBs). The completed stack rolled out to Launch Pad 39A on May 19. On June 2, engineers successfully completed an 18-second Flight Readiness Firing of the shuttle main engines. Post test inspections revealed a debonding of a thermal shield in main engine number 1’s combustion chamber, requiring its replacement at the pad. The work pushed the planned launch date back three days to June 25.

The June 26 launch abort Discovery’s three main engines hours after the launch abort
Left: The June 26 launch abort. Right: Discovery’s three main engines hours after the launch abort.

The failure of the shuttle’s backup General Purpose Computer (GPC) caused a one-day delay of the first launch attempt on June 25. On June 26, the countdown proceeded smoothly and at T minus 6.6 seconds the orbiter’s GPCs began the serial ignition sequence of the three main engines. Normally, the three engines ignite at 0.12-second intervals to ease stress on the system and to allow onboard computers to diagnose any problems. Engines number 2 and 3, forming the base of the triangle closest to the body flap, ignited as planned, but engine number 1 at the apex of the triangle and nearest the vertical tail, did not ignite at all. This caused the Redundant Set Launch Sequencer (RSLS) to shut the two working engines down, calling an abort to the countdown at T minus 4 seconds. To ease the tension, Hawley reportedly said, “Gee, I thought we’d be a little higher at main engine cutoff.” The fact that engine number 1 had never ignited caused some momentary confusion as displays showed that the RSLS had not shut it down. A single engine still burning with the shuttle still on the pad would have led to a disaster. Once controllers and the onboard crew realized what had actually happened, they calmed down somewhat. What no one realized at the time is that a hydrogen fire, invisible to the naked eye, had broken out at the aft end of the orbiter. Had the crew evacuated at that time, they would have run through the invisible flames. The pad’s fire suppression system came on to deal with the fire, and when the crew did finally egress the shuttle, they received a good dousing of water. The crew returned safely, if a little drenched, to crew quarters. After ground teams assessed the cause of the abort, they made the decision to roll the stack back to the VAB, demate Discovery from the ET and SRBs and tow it back to the OPF. Workers replaced the faulty engine, and Discovery rolled back out to the launch pad on Aug. 9 for another launch attempt 20 days later, delayed by one day due to a software issue, and finally on Aug. 30, Discovery roared off its launch pad on a pillar of flame and within 8 minutes, NASA’s newest orbiter reached low Earth orbit.

Gemini VI launch pad abort in December 1965 Gemini VI crew of Thomas P. Stafford, left, and Walter M. Schirra
Left: Gemini VI launch pad abort in December 1965. Right: Gemini VI crew of Thomas P. Stafford, left, and Walter M. Schirra.

Although the first on the pad abort of the space shuttle program, the June 1984 attempt to launch Discovery on STS-41D represented the second such incident in the American human spaceflight program. The dubious honor of the first on the pad abort belongs to Gemini VI. On Dec. 12, 1965, astronauts Walter M. Schirra and Thomas P. Stafford strapped into the spacecraft for their second launch attempt to rendezvous with Gemini VII. The countdown clock ticked down to zero, and the Titan-II rocket’s first stage engines ignited. And shut off after just 1.2 seconds. Although the mission clock aboard the spacecraft had started, the rocket had not lifted off, and Schirra made the split-second decision not to eject himself and Stafford from the spacecraft. Engineers later traced the cause of the abort to a dust cap inadvertently left in the engine compartment. After workers took care of that issue, Schirra and Stafford tried to launch again on Dec. 15, and the third time proved to be the charm. 

STS-51F in August 1985 STS-55 in March 1993 STS-51 in August 1993 STS-68 in August 1994
Four space shuttle on-the-pad aborts. STS-51F in August 1985, left, STS-55 in March 1993, STS-51 in August 1993, and STS-68 in August 1994.

In the 10 years following the June 1984 abort, four additional shuttle launch attempts ended with an RSLS abort after at least one main engine had ignited.

July 12, 1985, STS-51F space shuttle Challenger

The RSLS executed a shutdown at T minus 3 seconds, after all three main engines had ignited, because the number two main engine’s chamber coolant valve did not close as rapidly as needed for startup. Investigations revealed a faulty sensor as the real culprit, and workers replaced it at the pad. Challenger launched successfully on July 29, but during ascent engine number 1 shut down, the only inflight failure of a main engine, resulting in the only abort to orbit of the program. Although the shuttle achieved a slightly lower than planned orbit, the mission met most of its science objectives.

March 22, 1993, STS-55 space shuttle Columbia

Following a trouble-free countdown, Columbia’s three main engines came to life at as planned, but three seconds later, the RSLS shut them all down when it detected that engine number 3 had not come up to full power. A tiny fragment of rubber caused a valve in the liquid oxygen system to leak, preventing the engine from fully starting. Columbia borrowed three main engines from Endeavour, and STS-55 took off on April 26 to carry out its German Spacelab-D2 mission.

Aug. 12, 1993, STS-51 space shuttle Discovery

After a trouble-free preflight processing and countdown, Discovery’s three main engines ignited as planned at T minus 6.6 seconds. Three seconds later, all three engines shut down. Investigation revealed the cause as a faulty sensor that monitors fuel flow through main engine number 2. Workers replaced all three engines at the pad, and Discovery took off on Sept. 12 to carry out its mission.

Aug. 18, 1994, STS-68 space shuttle Endeavour

Following a smooth countdown, Endeavour’s three main engines began their startup sequence at T minus 6.6 seconds. The GLS computers detected a problem with the No. 3 main engine’s High Pressure Oxidizer Turbine. One of its sensors detected a dangerously high discharge temperature, exceeding the rules of the Launch Commit Criteria, and Endeavour’s computers halted the countdown a mere 1.9 seconds before liftoff. Workers rolled Endeavour back to the VAB, replacing its three main engines with ones borrowed from Atlantis. STS-68 finally took off on Sept. 30 and successfully completed its radar mapping mission. NASA astronaut Daniel W. Bursch holds the distinction as the only person to have experienced two on-the-pad aborts, as he served as a mission specialist on both STS-51 and STS-68.

The lessons learned from these on-the-pad abort experiences can inform current and future programs. For example, the Space Launch System (SLS) uses main engines leftover from the space shuttle program to power its booster stage. And operationally, other launcher systems can learn from these experiences and safely manage similar future events.

Read recollections of the STS-41D mission by Hartsfield, Coats, Mullane, Hawley, and Walker in their oral histories with the JSC History Office.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The inaugural class of Guardian officers graduates from the Officer Training Course at Peterson Space Force Base.

      View the full article
    • By European Space Agency
      Video: 00:09:30 In Tenerife, Spain, stands a unique duo: ESA’s Izaña-1 and Izaña-2 laser-ranging stations. Together, they form an optical technology testbed of the European Space Agency that takes the monitoring of space debris and satellites to a new level while maturing new technologies for commercialisation.  
      Space debris is a threat to satellites and is rapidly becoming a daily concern for satellite operators. The Space Safety Programme, part of ESA Operations, managed from ESOC in Germany, helps develop new technologies to detect and track debris, and to prevent collisions in orbit in new and innovative ways. 
      One of these efforts takes place at the Izaña station in Tenerife. There, ESA and partner companies are testing how to deliver precise orbit data on demand with laser-based technologies. The Izaña-2 station was recently finalised by the German company DiGOS and is now in use.  
      To perform space debris laser ranging, Izaña-2 operates as a laser transmitter, emitting high-power laser pulses towards objects in space. Izaña-1 then acts as the receiver of the few photons that are reflected back. The precision of the laser technology enables highly accurate data for precise orbit determination, which in turn is crucial for actionable collision avoidance systems and sustainable space traffic management. 
      With the OMLET (Orbital Maintenance via Laser momEntum Transfer) project, ESA combines different development streams and possibilities for automation to support European industry with getting two innovative services market-ready: on-demand ephemeris provision and laser-based collision avoidance services for end users such as satellite operators. 
      A future goal is to achieve collision avoidance by laser momentum transfer, where instead of the operational satellite, the piece of debris will be moved out of the way. This involves altering the orbit of a piece of space debris slightly by applying a small force to the object through laser illumination.  
      The European Space Agency actively supports European industry in capitalising on the business opportunities that not only safeguard our satellites but also pave the way for the sustainable use of space. 
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Robert Mosher, HIAD materials and processing lead at NASA Langley, holds up a piece of webbing material, known as Zylon, which comprise the straps of the HIAD.NASA/Joe Atkinson Components of a NASA technology that could one day help crew and cargo enter harsh planetary environments, like that of Mars, are taking an extended trip to space courtesy of the United States Space Force.
      On Aug. 21, several pieces of webbing material, known as Zylon, which comprise the straps of the HIAD (Hypersonic Inflatable Aerodynamic Decelerator) aeroshell developed by NASA’s Langley Research Center in Hampton, Virginia, launched to low Earth orbit along with other experiments aboard the Space Force’s X-37B Orbital Test Vehicle. This trip will help researchers characterize how the Zylon webbing responds to long-duration exposure to the harsh vacuum of space.
      The strap material on the HIAD aeroshell serves two purposes – short strap lengths hold together HIAD’s inflatable rings and longer pieces help to distribute the load more evenly across the cone-shaped structure. The HIAD aeroshell technology could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.
      “We’re researching how HIAD technology could help get humans to Mars. We want to look at the effects of long-term exposure to space – as if the Zylon material is going for a potential six to nine-month mission to Mars,” said Robert Mosher, HIAD materials and processing lead at NASA Langley. “We want to make sure we know how to protect those structural materials in the long term.”
      The Zylon straps are visible here during the inflation of LOFTID as part of a November 2022 orbital flight test. LOFTID was a version of the HIAD aeroshell — a technology that could allow larger spacecraft to safely descend through the atmospheres of celestial bodies like Mars, Venus, and even Saturn’s moon, Titan.NASA Flying Zylon material aboard the Space Force’s X-37B mission will help NASA researchers understand what kind of aging might occur to the webbing on a long space journey before it experiences the extreme environments of atmospheric entry, during which it has to retain strength at high temperatures.
      Multiple samples are in small canisters on the X-37B. Mosher used two different techniques to put the strap material in the canisters. Some he tightly coiled up, others he stuffed in.
      “Typically, we pack a HIAD aeroshell kind of like you pack a parachute, so they’re compressed,” he said. “We wanted to see if there was a difference between tightly coiled material and stuff-packed material like you would normally see on a HIAD.”
      Some of the canisters also include tiny temperature and humidity sensors set to collect readings at regular intervals. When the Space Force returns the samples from the X-37B flight, Mosher will compare them to a set of samples that have remained in canisters here on Earth to look for signs of degradation.
      The material launched to space aboard the Space Force’s X-37B Orbital Test Vehicle, seen here earlier this year.Courtesy of the United States Space Force “Getting this chance to have the Zylon material exposed to space for an extended period of time will begin to give us some data on the long-term packing of a HIAD,” Mosher said.
      Uninflated HIAD aeroshells can be packed into small spaces within a spacecraft. This results in a decelerator that can be much larger than the diameter of its launch vehicle and can therefore land much heavier loads and deliver them to higher elevations on a planet or other celestial body.
      Rigid aeroshells, the sizes of which are dictated by the diameters of their launch vehicles, typically 4.5 to 5 meters, are capable of landing well-equipped, car-sized rovers on Mars. By contrast, an inflatable HIAD, with an 18-20m diameter, could land the equivalent of a small, fully furnished ranch house with a car in the garage on Mars.
      NASA’s HIAD aeroshell developments build on the success of the agency’s LOFTID (Low-Earth Orbit Flight Test of an Inflatable Decelerator) mission that launched on Nov. 10, 2022, resulting in valuable insights into how this technology performs under the stress of re-entering Earth’s atmosphere after being exposed to space for a short time period.
      Learn more: https://www.nasa.gov/space-technology-mission-directorate/tdm/
      About the Author
      Joe Atkinson
      Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Aug 27, 2025 Related Terms
      Langley Research Center Space Technology Mission Directorate Technology Demonstration Missions Program Explore More
      4 min read Washington State Student Wins 2025 NASA Art Contest
      Article 2 days ago 2 min read NASA Tests Tools to Assess Drone Safety Over Cities
      Article 5 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments
      Article 1 week ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA is kicking off the 2026 Student Launch challenge, looking for new student teams to design, build, and launch high-powered rockets with a scientific or engineering payload next April. 
      The agency is seeking proposals until Monday, Sept. 22. Details about this year’s challenge are in the 2026 handbook, which outlines the requirements for middle school, high school, and college students to participate. After a competitive proposal selection process, selected teams must meet documentation milestones and undergo detailed reviews throughout the activity year. 
      NASA’s Student Launch, a STEM competition, officially kicks off its 26th anniversary with the 2026 handbook. “These bright students rise to a nine-month challenge for Student Launch that tests their skills in engineering, design, and teamwork,” said Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region. “They are part of the Golden Age of explorers – the future scientists, engineers, and innovators who will lead us into the future of space exploration.”
      Student Launch will culminate with on-site events starting on April 22, 2026. Final launches are scheduled for April 25, at Bragg Farms in Toney, Alabama, near NASA’s Marshall Space Flight Center in Huntsville, Alabama. 
      Each year, NASA updates the university payload challenge to reflect current scientific and exploration missions. For the 2026 season, the payload challenge will take inspiration from the Artemis missions, which seek to explore the Moon for scientific discovery, technology advancement, and to learn how to live and work on another world as we prepare for human missions to Mars. This year’s payload challenge tasks college and university teams with designing, building, and flying a habitat to safely house four STEMnauts – non-living objects representing astronauts – during extended missions. The habitat must include equipment capable of both collecting and testing soil samples to support agricultural research operations.
      Nearly 1,000 students participated in the 2025 Student Launch competition – making up 71 teams from across the United States. Teams launched their rockets to an altitude between 4,000 and 6,000 feet, while attempting to make a successful landing and executing the payload mission.
      NASA Student Launch has been at the forefront of experiential education, providing students from middle school through university with unparalleled opportunities to engage in real-world engineering and scientific research.
      John Eckhart
      Technical Coordinator, Student Launch
       Former NASA Marshall Director Art Stephenson started Student Launch in 2000 as a student rocket competition at the center. Just two university teams competed in the inaugural challenge – Alabama A&M University and the University of Alabama in Huntsville. The challenge continues to soar with thousands of students participating in the STEM competition each year, and many going on to a career with NASA.
      NASA Marshall’s Office of STEM Engagement hosts Student Launch to provide students with real-world experiences that encourage them to pursue degrees and careers in science, technology, engineering, and mathematics. Student Launch is one of several NASA Artemis Student Challenges – a variety of activities that expose students to the knowledge and technology required to achieve the goals of the agency’s Artemis campaign. 
      In addition to NASA Office of STEM Engagement’s Next Generation STEM project, NASA Space Operations Mission Directorate, Northrop Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and, Bastion Technologies provide funding and leadership for the Student Launch competition. 
      To learn more about Student Launch, visit: 
      www.nasa.gov/studentlaunch
      Share
      Details
      Last Updated Aug 25, 2025 Related Terms
      Marshall Space Flight Center Explore More
      4 min read NASA’s Artemis II Lunar Science Operations to Inform Future Missions
      While the Artemis II crew will be the first humans to test NASA’s Orion spacecraft…
      Article 4 days ago 5 min read NASA, Army National Guard Partner on Flight Training for Moon Landing
      Article 7 days ago 4 min read NASA Challenge Winners Cook Up New Industry Developments
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System

      View the full article
    • By NASA
      NASA’s SpaceX 33rd commercial resupply mission successfully launched to deliver supplies and science investigations to the International Space Station from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Aug. 24, 2025.Credit: NASA Following a successful launch of NASA’s SpaceX 33rd commercial resupply mission, new scientific experiments and cargo for the agency are bound for the International Space Station.
      The SpaceX Dragon spacecraft, carrying more than 5,000 pounds of supplies to the orbiting laboratory, lifted off at 2:45 a.m. EDT on Sunday, on the company’s Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.


      “Commercial resupply missions to the International Space Station deliver science that helps prove technologies for Artemis lunar missions and beyond,” said acting NASA Administrator Sean Duffy. “This flight will test 3D printing metal parts and bioprinting tissue in microgravity – technology that could give astronauts tools and medical support on future Moon and Mars missions.”

      Live coverage of the spacecraft’s arrival will begin at 6 a.m., Monday, Aug. 25, on NASA+, Netflix, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.

      The spacecraft is scheduled to dock autonomously at approximately 7:30 a.m. to the forward port of the space station’s Harmony module.
      In addition to food, supplies, and equipment for the crew, Dragon will deliver several experiments, including bone-forming stem cells for studying bone loss prevention and materials, to 3D print medical implants that could advance treatments for nerve damage on Earth. Dragon also will deliver bioprinted liver tissue to study blood vessel development in microgravity, as well as supplies to 3D print metal cubes in space.
      These are just a sample of the hundreds of biology and biotechnology, physical sciences, Earth and space science investigations conducted aboard the orbiting laboratory. This research benefits people on Earth while laying the groundwork for other agency deep space missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars, inspiring the world through discovery in a new Golden Age of innovation and exploration.
      During the mission, Dragon also will perform a reboost demonstration of station to maintain its current altitude. The hardware, located in the trunk of Dragon, contains an independent propellant system separate from the spacecraft to fuel two Draco engines using existing hardware and propellant system design. The boost kit will help sustain the orbiting lab’s altitude starting in September with a series of burns planned periodically throughout the fall of 2025. During NASA’s SpaceX 31st commercial resupply services mission on Nov. 8, 2024, the Dragon spacecraft performed its first demonstration of these capabilities.
      The Dragon spacecraft is scheduled to remain at the space station until December, when it will depart the orbiting laboratory and return to Earth with research and cargo, splashing down off the coast of California.
      Learn more about the International Space Station at:
      https://www.nasa.gov/international-space-station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Aug 24, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Resupply International Space Station (ISS) ISS Research SpaceX Commercial Resupply View the full article
  • Check out these Videos

×
×
  • Create New...