Members Can Post Anonymously On This Site
Time to build zero-debris satellites
-
Similar Topics
-
By NASA
5 min read
Percolating Clues: NASA Models New Way to Build Planetary Cores
NASA’s Perseverance rover was traveling in the channel of an ancient river, Neretva Vallis, when it captured this view of an area of scientific interest nicknamed “Bright Angel” – the light-toned area in the distance at right. The area features light-toned rocky outcrops that may represent either ancient sediment that later filled the channel or possibly much older rock that was subsequently exposed by river erosion. NASA/JPL-Caltech A new NASA study reveals a surprising way planetary cores may have formed—one that could reshape how scientists understand the early evolution of rocky planets like Mars.
Conducted by a team of early-career scientists and long-time researchers across the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston, the study offers the first direct experimental and geochemical evidence that molten sulfide, rather than metal, could percolate through solid rock and form a core—even before a planet’s silicate mantle begins to melt.
For decades, scientists believed that forming a core required large-scale melting of a planetary body, followed by heavy metallic elements sinking to the center. This study introduces a new scenario—especially relevant for planets forming farther from the Sun, where sulfur and oxygen are more abundant than iron. In these volatile-rich environments, sulfur behaves like road salt on an icy street—it lowers the melting point by reacting with metallic iron to form iron-sulfide so that it may migrate and combine into a core. Until now, scientists didn’t know if sulfide could travel through solid rock under realistic planet formation conditions.
Working on this project pushed us to be creative. It was exciting to see both data streams converge on the same story.
Dr. Jake Setera
ARES Scientist with Amentum
The study results gave researchers a way to directly observe this process using high-resolution 3D imagery—confirming long-standing models about how core formation can occur through percolation, in which dense liquid sulfide travels through microscopic cracks in solid rock.
“We could actually see in full 3D renderings how the sulfide melts were moving through the experimental sample, percolating in cracks between other minerals,” said Dr. Sam Crossley of the University of Arizona in Tucson, who led the project while a postdoctoral fellow with NASA Johnson’s ARES Division. “It confirmed our hypothesis—that in a planetary setting, these dense melts would migrate to the center of a body and form a core, even before the surrounding rock began to melt.”
Recreating planetary formation conditions in the lab required not only experimental precision but also close collaboration among early-career scientists across ARES to develop new ways of observing and analyzing the results. The high-temperature experiments were first conducted in the experimental petrology lab, after which the resulting samples—or “run products”—were brought to NASA Johnson’s X-ray computed tomography (XCT) lab for imaging.
A molten sulfide network (colored gold) percolates between silicate mineral grains in this cut-out of an XCT rendering—rendered are unmelted silicates in gray and sulfides in white. Credit: Crossley et al. 2025, Nature Communications X-ray scientist and study co-author Dr. Scott Eckley of Amentum at NASA Johnson used XCT to produce high-resolution 3D renderings—revealing melt pockets and flow pathways within the samples in microscopic detail. These visualizations offered insight into the physical behavior of materials during early core formation without destroying the sample.
The 3D XCT visualizations initially confirmed that sulfide melts could percolate through solid rock under experimental conditions, but that alone could not confirm whether percolative core formation occurred over 4.5 billion years ago. For that, researchers turned to meteorites.
“We took the next step and searched for forensic chemical evidence of sulfide percolation in meteorites,” Crossley said. “By partially melting synthetic sulfides infused with trace platinum-group metals, we were able to reproduce the same unusual chemical patterns found in oxygen-rich meteorites—providing strong evidence that sulfide percolation occurred under those conditions in the early solar system.”
To understand the distribution of trace elements, study co-author Dr. Jake Setera, also of Amentum, developed a novel laser ablation technique to accurately measure platinum-group metals, which concentrate in sulfides and metals.
“Working on this project pushed us to be creative,” Setera said. “To confirm what the 3D visualizations were showing us, we needed to develop an appropriate laser ablation method that could trace the platinum group-elements in these complex experimental samples. It was exciting to see both data streams converge on the same story.”
When paired with Setera’s geochemical analysis, the data provided powerful, independent lines of evidence that molten sulfide had migrated and coalesced within a solid planetary interior. This dual confirmation marked the first direct demonstration of the process in a laboratory setting.
Dr. Sam Crossley welds shut the glass tube of the experimental assembly. To prevent reaction with the atmosphere and precisely control oxygen and sulfur content, experiments needed to be sealed in a closed system under vacuum. Credit: Amentum/Dr. Brendan Anzures The study offers a new lens through which to interpret planetary geochemistry. Mars in particular shows signs of early core formation—but the timeline has puzzled scientists for years. The new results suggest that Mars’ core may have formed at an earlier stage, thanks to its sulfur-rich composition—potentially without requiring the full-scale melting that Earth experienced. This could help explain longstanding puzzles in Mars’ geochemical timeline and early differentiation.
The results also raise new questions about how scientists date core formation events using radiogenic isotopes, such as hafnium and tungsten. If sulfur and oxygen are more abundant during a planet’s formation, certain elements may behave differently than expected—remaining in the mantle instead of the core and affecting the geochemical “clocks” used to estimate planetary timelines.
This research advances our understanding of how planetary interiors can form under different chemical conditions—offering new possibilities for interpreting the evolution of rocky bodies like Mars. By combining experimental petrology, geochemical analysis, and 3D imaging, the team demonstrated how collaborative, multi-method approaches can uncover processes that were once only theoretical.
Crossley led the research during his time as a McKay Postdoctoral Fellow—a program that recognizes outstanding early-career scientists within five years of earning their doctorate. Jointly offered by NASA’s ARES Division and the Lunar and Planetary Institute in Houston, the fellowship supports innovative research in astromaterials science, including the origin and evolution of planetary bodies across the solar system.
As NASA prepares for future missions to the Moon, Mars, and beyond, understanding how planetary interiors form is more important than ever. Studies like this one help scientists interpret remote data from spacecraft, analyze returned samples, and build better models of how our solar system came to be.
For more information on NASA’s ARES division, visit: https://ares.jsc.nasa.gov/
Victoria Segovia
NASA’s Johnson Space Center
281-483-5111
victoria.segovia@nasa.gov
Share
Details
Last Updated May 22, 2025 Related Terms
Astromaterials Planetary Science Planetary Science Division The Solar System Explore More
6 min read NASA’s Dragonfly Mission Sets Sights on Titan’s Mysteries
Article
2 hours ago
4 min read Eclipses, Auroras, and the Spark of Becoming: NASA Inspires Future Scientists
Article
1 week ago
6 min read NASA Observes First Visible-light Auroras at Mars
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Planetary Science Stories
Astromaterials
Latest NASA Science News
Solar System
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The SWOT satellite is helping scientists size up flood waves on waterways like the Yellowstone River, pictured here in October 2024 in Montana. SWOT measures the height of surface waters, including the ocean, and hundreds of thousands of rivers, lakes, and reservoirs in the U.S. alone.NPS In a first, researchers from NASA and Virginia Tech used satellite data to measure the height and speed of potentially hazardous flood waves traveling down U.S. rivers. The three waves they tracked were likely caused by extreme rainfall and by a loosened ice jam. While there is currently no database that compiles satellite data on river flood waves, the new study highlights the potential of space-based observations to aid hydrologists and engineers, especially those working in communities along river networks with limited flood control structures such as levees and flood gates.
Unlike ocean waves, which are ordinarily driven by wind and tides, and roll to shore at a steady clip, river waves (also called flood or flow waves) are temporary surges stretching tens to hundreds of miles. Typically caused by rainfall or seasonal snowmelt, they are essential to shuttling nutrients and organisms down a river. But they can also pose hazards: Extreme river waves triggered by a prolonged downpour or dam break can produce floods.
“Ocean waves are well known from surfing and sailing, but rivers are the arteries of the planet. We want to understand their dynamics,” said Cedric David, a hydrologist at NASA’s Jet Propulsion Laboratory in Southern California and a coauthor of a new study published May 14 in Geophysical Research Letters.
SWOT is depicted in orbit in this artist’s concept, with sunlight glinting off one of its solar panels and both antennas of its key instrument — the Ka-band Radar Interferometer (KaRIn) — extended. The antennas collect data along a swath 30 miles (50 kilometers) wide on either side of the satellite.CNES Measuring Speed and Size
To search for river waves for her doctoral research, lead author Hana Thurman of Virginia Tech turned to a spacecraft launched in 2022. The SWOT (Surface Water and Ocean Topography) satellite is a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales). It is surveying the height of nearly all of Earth’s surface waters, both fresh and salty, using its sensitive Ka-band Radar Interferometer (KaRIn). The instrument maps the elevation and width of water bodies by bouncing microwaves off the surface and timing how long the signal takes to return.
“In addition to monitoring total storage of waters in lakes and rivers, we zoom in on dynamics and impacts of water movement and change,” said Nadya Vinogradova Shiffer, SWOT program scientist at NASA Headquarters in Washington.
Thurman knew that SWOT has helped scientists track rising sea levels near the coast, spot tsunami slosh, and map the seafloor, but could she identify river height anomalies in the data indicating a wave on the move?
She found that the mission had caught three clear examples of river waves, including one that arose abruptly on the Yellowstone River in Montana in April 2023. As the satellite passed overhead, it observed a 9.1-foot-tall (2.8-meter-tall) crest flowing toward the Missouri River in North Dakota. It was divided into a dramatic 6.8-mile-long (11-kilometer-long) peak followed by a more drawn‐out tail. These details are exciting to see from orbit and illustrate the KaRIn instrument’s uniquely high spatial resolution, Thurman said.
Sleuthing through optical Sentinel-2 imagery of the area, she determined that the wave likely resulted from an ice jam breaking apart upstream and releasing pent-up water.
The other two river waves that Thurman and the team found were triggered by rainfall runoff. One, spotted by SWOT starting on Jan. 25, 2024, on the Colorado River south of Austin, Texas, was associated with the largest flood of the year on that section of river. Measuring over 30 feet (9 meters) tall and 166 miles (267 kilometers) long, it traveled around 3.5 feet (1.07 meters) per second for over 250 miles (400 kilometers) before discharging into Matagorda Bay.
The other wave originated on the Ocmulgee River near Macon, Georgia, in March 2024. Measuring over 20 feet (6 meters) tall and extending more than 100 miles (165 kilometers), it traveled about a foot (0.33 meters) per second for more than 124 miles (200 kilometers).
“We’re learning more about the shape and speed of flow waves, and how they change along long stretches of river,” Thurman said. “That could help us answer questions like, how fast could a flood get here and is infrastructure at risk?”
Complementary Observations
Engineers and water managers measuring river waves have long relied on stream gauges, which record water height and estimate discharge at fixed points along a river. In the United States, stream gauge networks are maintained by agencies including the U.S. Geological Survey. They are sparser in other parts of the world.
“Satellite data is complementary because it can help fill in the gaps,” said study supervisor George Allen, a hydrologist and remote sensing expert at Virginia Tech.
If stream gauges are like toll booths clocking cars as they pass, SWOT is like a traffic helicopter taking snapshots of the highway.
The wave speeds that SWOT helped determine were similar to those calculated using gauge data alone, Allen said, showing how the satellite could help monitor waves in river basins without gauges. Knowing where and why river waves develop can help scientists tracking changing flood patterns around the world.
Orbiting Earth multiple times each day, SWOT is expected to observe some 55% of large-scale floods at some stage in their life cycle. “If we see something in the data, we can say something,” David said of SWOT’s potential to flag dangerous floods in the making. “For a long time, we’ve stood on the banks of our rivers, but we’ve never seen them like we are now.”
More About SWOT
The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
News Media Contacts
Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
Written by Sally Younger
2025-074
Share
Details
Last Updated May 21, 2025 Related Terms
SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Explore More
3 min read Devil’s in Details in Selfie Taken by NASA’s Mars Perseverance Rover
Article 2 hours ago 5 min read NASA’s Perseverance Mars Rover to Take Bite Out of ‘Krokodillen’
Article 2 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By Space Force
128 Air Force Reserve Professionals who will transfer into the Space Force in a full-time capacity.
View the full article
-
By NASA
6 Min Read NASA’s Webb Captures Neptune’s Auroras For First Time
At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. Credits:
NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) Long-sought auroral glow finally emerges under Webb’s powerful gaze
For the first time, NASA’s James Webb Space Telescope has captured bright auroral activity on Neptune. Auroras occur when energetic particles, often originating from the Sun, become trapped in a planet’s magnetic field and eventually strike the upper atmosphere. The energy released during these collisions creates the signature glow.
In the past, astronomers have seen tantalizing hints of auroral activity on Neptune, for example, in the flyby of NASA’s Voyager 2 in 1989. However, imaging and confirming the auroras on Neptune has long evaded astronomers despite successful detections on Jupiter, Saturn, and Uranus. Neptune was the missing piece of the puzzle when it came to detecting auroras on the giant planets of our solar system.
“Turns out, actually imaging the auroral activity on Neptune was only possible with Webb’s near-infrared sensitivity,” said lead author Henrik Melin of Northumbria University, who conducted the research while at the University of Leicester. “It was so stunning to not just see the auroras, but the detail and clarity of the signature really shocked me.”
The data was obtained in June 2023 using Webb’s Near-Infrared Spectrograph. In addition to the image of the planet, astronomers obtained a spectrum to characterize the composition and measure the temperature of the planet’s upper atmosphere (the ionosphere). For the first time, they found an extremely prominent emission line signifying the presence of the trihydrogen cation (H3+), which can be created in auroras. In the Webb images of Neptune, the glowing aurora appears as splotches represented in cyan.
Image A:
Neptune’s Auroras – Hubble and Webb
At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. The cyan splotches, which represent auroral activity, and white clouds, are data from Webb’s Near-Infrared Spectrograph (NIRSpec), overlayed on top of the full image of the planet from Hubble’s Wide Field Camera 3. NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) “H3+ has a been a clear signifier on all the gas giants — Jupiter, Saturn, and Uranus — of auroral activity, and we expected to see the same on Neptune as we investigated the planet over the years with the best ground-based facilities available,” explained Heidi Hammel of the Association of Universities for Research in Astronomy, Webb interdisciplinary scientist and leader of the Guaranteed Time Observation program for the Solar System in which the data were obtained. “Only with a machine like Webb have we finally gotten that confirmation.”
The auroral activity seen on Neptune is also noticeably different from what we are accustomed to seeing here on Earth, or even Jupiter or Saturn. Instead of being confined to the planet’s northern and southern poles, Neptune’s auroras are located at the planet’s geographic mid-latitudes — think where South America is located on Earth.
This is due to the strange nature of Neptune’s magnetic field, originally discovered by Voyager 2 in 1989 which is tilted by 47 degrees from the planet’s rotation axis. Since auroral activity is based where the magnetic fields converge into the planet’s atmosphere, Neptune’s auroras are far from its rotational poles.
The ground-breaking detection of Neptune’s auroras will help us understand how Neptune’s magnetic field interacts with particles that stream out from the Sun to the distant reaches of our solar system, a totally new window in ice giant atmospheric science.
From the Webb observations, the team also measured the temperature of the top of Neptune’s atmosphere for the first time since Voyager 2’s flyby. The results hint at why Neptune’s auroras remained hidden from astronomers for so long.
“I was astonished — Neptune’s upper atmosphere has cooled by several hundreds of degrees,” Melin said. “In fact, the temperature in 2023 was just over half of that in 1989.”
Through the years, astronomers have predicted the intensity of Neptune’s auroras based on the temperature recorded by Voyager 2. A substantially colder temperature would result in much fainter auroras. This cold temperature is likely the reason that Neptune’s auroras have remained undetected for so long. The dramatic cooling also suggests that this region of the atmosphere can change greatly even though the planet sits over 30 times farther from the Sun compared to Earth.
Equipped with these new findings, astronomers now hope to study Neptune with Webb over a full solar cycle, an 11-year period of activity driven by the Sun’s magnetic field. Results could provide insights into the origin of Neptune’s bizarre magnetic field, and even explain why it’s so tilted.
“As we look ahead and dream of future missions to Uranus and Neptune, we now know how important it will be to have instruments tuned to the wavelengths of infrared light to continue to study the auroras,” added Leigh Fletcher of Leicester University, co-author on the paper. “This observatory has finally opened the window onto this last, previously hidden ionosphere of the giant planets.”
These observations, led by Fletcher, were taken as part of Hammel’s Guaranteed Time Observation program 1249. The team’s results have been published in Nature Astronomy.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Read the research results published in Nature Astronomy.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Hannah Braun- hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Maryland
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Science
Henrik Melin (Northumbria University)
Related Information
View more: Webb images of Neptune
Watch: Visualization of Neptune’s tilted magnetic axis
Learn more : about Neptune
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
About Neptune
About the Solar System
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Neptune
Neptune Stories
Our Solar System
Share
Details
Last Updated Mar 25, 2025 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Neptune Planetary Science Planets Science & Research The Solar System View the full article
-
By European Space Agency
Image: ESA's Atomic Clock Ensemble in Space at NASA's Kennedy Space Center View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.