Members Can Post Anonymously On This Site
Too young to be so cool: lessons from three neutron stars
-
Similar Topics
-
By NASA
ESA/Hubble and NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble) This new image, released on April 4, 2025, showcases the dazzling young star cluster NGC 346. Although both the James Webb Space Telescope and the Hubble Space Telescope have released images of NGC 346 previously, this image includes new data and is the first to combine Hubble observations made at infrared, optical, and ultraviolet wavelengths into an intricately detailed view of this vibrant star-forming factory.
Hubble’s exquisite sensitivity and resolution were instrumental in uncovering the secrets of NGC 346’s star formation. Using two sets of observations taken 11 years apart, researchers traced the motions of NGC 346’s stars, revealing them to be spiraling in toward the center of the cluster. This spiraling motion arises from a stream of gas from outside of the cluster that fuels star formation in the center of the turbulent cloud.
Learn more about NGC 346 and the nebula it has shaped.
Image credit: ESA/Hubble and NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble)
View the full article
-
By NASA
Norman Rockwell In his painting called Grissom and Young, American painter and illustrator Norman Rockwell captures technicians helping NASA astronauts John Young and Gus Grissom suit up for the first flight of the Gemini program in March 1965. NASA loaned Norman Rockwell a Gemini spacesuit to make this painting as accurate as possible.
Since its beginning, NASA has used the power of art to communicate the extraordinary aspects of its missions in a way that connects uniquely with humanity. NASA’s original art program, started in 1962 under the direction of Administrator James Webb, included a diverse collection of works from artists such as Rockwell, Andy Warhol, and Annie Leibovitz.
See more art inspired by NASA.
Image credit: Norman Rockwell
View the full article
-
By NASA
4 min read
NASA to Launch Three Rockets from Alaska in Single Aurora Experiment
Three NASA-funded rockets are set to launch from Poker Flat Research Range in Fairbanks, Alaska, in an experiment that seeks to reveal how auroral substorms affect the behavior and composition of Earth’s far upper atmosphere.
The experiment’s outcome could upend a long-held theory about the aurora’s interaction with the thermosphere. It may also improve space weather forecasting, critical as the world becomes increasingly reliant on satellite-based devices such as GPS units in everyday life.
Colorful ribbons of aurora sway with geomagnetic activity above the launch pads of Poker Flat Research Range. NASA/Rachel Lense The University of Alaska Fairbanks (UAF) Geophysical Institute owns Poker Flat, located 20 miles north of Fairbanks, and operates it under a contract with NASA’s Wallops Flight Facility in Virginia, which is part of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The experiment, titled Auroral Waves Excited by Substorm Onset Magnetic Events, or AWESOME, features one four-stage rocket and two two-stage rockets all launching in an approximately three-hour period.
Colorful vapor tracers from the largest of the three rockets should be visible across much of northern Alaska. The launch window is March 24 through April 6.
The mission, led by Mark Conde, a space physics professor at UAF, involves about a dozen UAF graduate student researchers at several ground monitoring sites in Alaska at Utqiagvik, Kaktovik, Toolik Lake, Eagle, and Venetie, as well as Poker Flat. NASA delivers, assembles, tests, and launches the rockets.
“Our experiment asks the question, when the aurora goes berserk and dumps a bunch of heat in the atmosphere, how much of that heat is spent transporting the air upward in a continuous convective plume and how much of that heat results in not only vertical but also horizontal oscillations in the atmosphere?” Conde said.
Confirming which process is dominant will reveal the breadth of the mixing and the related changes in the thin air’s characteristics.
“Change in composition of the atmosphere has consequences,” Conde said. “And we need to know the extent of those consequences.”
Most of the thermosphere, which reaches from about 50 to 350 miles above the surface, is what scientists call “convectively stable.” That means minimal vertical motion of air, because the warmer air is already at the top, due to absorption of solar radiation.
A technician with NASA’s Wallops Flight Facility sounding rocket office works on one of the payload sections of the rocket that will launch for the AWESOME campaign. NASA/Lee Wingfield When auroral substorms inject energy and momentum into the middle and lower thermosphere (roughly 60 to 125 miles up), it upsets that stability. That leads to one prevailing theory — that the substorms’ heat is what causes the vertical-motion churn of the thermosphere.
Conde believes instead that acoustic-buoyancy waves are the dominant mixing force and that vertical convection has a much lesser role. Because acoustic-buoyancy waves travel vertically and horizontally from where the aurora hits, the aurora-caused atmospheric changes could be occurring over a much broader area than currently believed.
Better prediction of impacts from those changes is the AWESOME mission’s practical goal.
“I believe our experiment will lead to a simpler and more accurate method of space weather prediction,” Conde said.
Two two-stage, 42-foot Terrier-Improved Malemute rockets are planned to respectively launch about 15 minutes and an hour after an auroral substorm begins. A four-stage, 70-foot Black Brant XII rocket is planned to launch about five minutes after the second rocket.
The first two rockets will release tracers at altitudes of 50 and 110 miles to detect wind movement and wave oscillations. The third rocket will release tracers at five altitudes from 68 to 155 miles.
Pink, blue, and white vapor traces should be visible from the third rocket for 10 to 20 minutes. Launches must occur in the dawn hours, with sunlight hitting the upper altitudes to activate the vapor tracers from the first rocket but darkness at the surface so ground cameras can photograph the tracers’ response to air movement.
By Rod Boyce
University of Alaska Fairbanks Geophysical Institute
NASA Media Contact: Sarah Frazier
Share
Details
Last Updated Mar 21, 2025 Related Terms
Sounding Rockets Goddard Space Flight Center Heliophysics Heliophysics Division Heliophysics Research Program Science & Research Science Mission Directorate Sounding Rockets Program Uncategorized Wallops Flight Facility Explore More
2 min read Hubble Captures a Neighbor’s Colorful Clouds
Article
7 hours ago
11 min read The Earth Observer Editor’s Corner: January–March 2025
Article
24 hours ago
5 min read Celebrating 25 Years of Terra
Article
24 hours ago
Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide
NASA’s James Webb Space Telescope has provided the clearest look in the infrared yet at the iconic multi-planet system HR 8799. Full image below. Credits:
NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) NASA’s James Webb Space Telescope has captured direct images of multiple gas giant planets within an iconic planetary system. HR 8799, a young system 130 light-years away, has long been a key target for planet formation studies.
The observations indicate that the well-studied planets of HR 8799 are rich in carbon dioxide gas. This provides strong evidence that the system’s four giant planets formed much like Jupiter and Saturn, by slowly building solid cores that attract gas from within a protoplanetary disk, a process known as core accretion.
The results also confirm that Webb can infer the chemistry of exoplanet atmospheres through imaging. This technique complements Webb’s powerful spectroscopic instruments, which can resolve the atmospheric composition.
“By spotting these strong carbon dioxide features, we have shown there is a sizable fraction of heavier elements, like carbon, oxygen, and iron, in these planets’ atmospheres,” said William Balmer, of Johns Hopkins University in Baltimore. “Given what we know about the star they orbit, that likely indicates they formed via core accretion, which is an exciting conclusion for planets that we can directly see.”
Balmer is the lead author of the study announcing the results published today in The Astrophysical Journal. Balmer and their team’s analysis also includes Webb’s observation of a system 97 light-years away called 51 Eridani.
Image A: HR 8799 (NIRCam Image)
NASA’s James Webb Space Telescope has provided the clearest look in the infrared yet at the iconic multi-planet system HR 8799. The closest planet to the star, HR 8799 e, orbits 1.5 billion miles from its star, which in our solar system would be located between the orbit of Saturn and Neptune. The furthest, HR 8799 b, orbits around 6.3 billion miles from the star, more than twice Neptune’s orbital distance. Colors are applied to filters from Webb’s NIRCam (Near-Infrared Camera), revealing their intrinsic differences. A star symbol marks the location of the host star HR 8799, whose light has been blocked by the coronagraph. In this image, the color blue is assigned to 4.1 micron light, green to 4.3 micron light, and red to the 4.6 micron light. NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) Image B: 51 Eridani (NIRCam Image)
Webb’s NIRCam (Near-Infrared Camera) captured this image of 51 Eridani b (also referred to as 51 Eri b), a cool, young exoplanet that orbits 890 million miles from its star, similar to Saturn’s orbit in our solar system. The 51 Eridani system is 97 light-years from Earth. This image includes filters representing 4.1-micron light as red. The background red in this image is not light from other planets, but a result of light subtraction during image processing. NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) HR 8799 is a young system about 30 million years old, a fraction of our solar system’s 4.6 billion years. Still hot from their tumultuous formation, the planets within HR 8799 emit large amounts of infrared light that give scientists valuable data on how they formed.
Giant planets can take shape in two ways: by slowly building solid cores with heavier elements that attract gas, just like the giants in our solar system, or when particles of gas rapidly coalesce into massive objects from a young star’s cooling disk, which is made mostly of the same kind of material as the star. The first process is called core accretion, and the second is called disk instability. Knowing which formation model is more common can give scientists clues to distinguish between the types of planets they find in other systems.
“Our hope with this kind of research is to understand our own solar system, life, and ourselves in the comparison to other exoplanetary systems, so we can contextualize our existence,” Balmer said. “We want to take pictures of other solar systems and see how they’re similar or different when compared to ours. From there, we can try to get a sense of how weird our solar system really is—or how normal.”
Image C: Young Gas Giant HR 8799 e (NIRCam Spectrum)
This graph shows a spectrum of one of the planets in the HR 8799 system, HR 8799 e. Spectral fingerprints of carbon dioxide and carbon monoxide appear in data collected by Webb’s NIRCam (Near-Infrared Camera). NASA, ESA, CSA, STScI, J. Olmsted (STScI) Of the nearly 6,000 exoplanets discovered, few have been directly imaged, as even giant planets are many thousands of times fainter than their stars. The images of HR 8799 and 51 Eridani were made possible by Webb’s NIRCam (Near-Infrared Camera) coronagraph, which blocks light from bright stars to reveal otherwise hidden worlds.
This technology allowed the team to look for infrared light emitted by the planets in wavelengths that are absorbed by specific gases. The team found that the four HR 8799 planets contain more heavy elements than previously thought.
The team is paving the way for more detailed observations to determine whether objects they see orbiting other stars are truly giant planets or objects such as brown dwarfs, which form like stars but don’t accumulate enough mass to ignite nuclear fusion.
“We have other lines of evidence that hint at these four HR 8799 planets forming using this bottom-up approach” said Laurent Pueyo, an astronomer at the Space Telescope Science Institute in Baltimore, who co-led the work. “How common is this for planets we can directly image? We don’t know yet, but we’re proposing more Webb observations to answer that question.”
“We knew Webb could measure colors of the outer planets in directly imaged systems,” added Rémi Soummer, director of STScI’s Russell B. Makidon Optics Lab and former lead for Webb coronagraph operations. “We have been waiting for 10 years to confirm that our finely tuned operations of the telescope would also allow us to access the inner planets. Now the results are in and we can do interesting science with it.”
The NIRCam observations of HR 8799 and 51 Eridani were conducted as part of Guaranteed Time Observations programs 1194 and 1412 respectively.
The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from The Astrophysical Journal.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Hannah Braun – hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Roberto Molar Candanosa
Johns Hopkins University, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
Video: Eclipse/Coronagraph Animation
Video: Exploring Star and Planet Formation
Learn more about gas giants
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Exoplanets
Exoplanet Stories
Universe
Share
Details
Last Updated Mar 17, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Exoplanets Gas Giant Exoplanets Goddard Space Flight Center Science & Research The Universe View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.