Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Hubble Observes a Cosmic Fossil

A globular cluster that looks like a very dense, ball-shaped collection of many shining stars in colors of white, yellow-orange, and blue. Some stars appear a bit larger and brighter than others, with the brightest having faint cross-shaped diffraction spikes. The cluster’s stars are scattered mostly uniformly, with their density increasing toward the cluster’s core where they merge into a strong, bright-white glow.
This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005.
ESA/Hubble & NASA, F. Niederhofer, L. Girardi

This NASA/ESA Hubble Space Telescope image features the globular cluster NGC 2005. It’s not an unusual globular cluster in and of itself, but it is a peculiarity when compared to its surroundings. NGC 2005 is located about 750 light-years from the heart of the Large Magellanic Cloud (LMC), which is the Milky Way’s largest satellite galaxy some 162,000 light-years from Earth. Globular clusters are densely-packed groups of stars that can hold tens of thousands or millions of stars. Their density means they are tightly bound by gravity and therefore very stable. This stability contributes to their longevity: globular clusters can be billions of years old, and are often comprised of very old stars. Studying globular clusters in space can be a little like studying fossils on Earth: where fossils give insights into the characteristics of ancient plants and animals, globular clusters illuminate the characteristics of ancient stars.

Current theories of galaxy evolution predict that galaxies merge with one another. Astronomers think the relatively large galaxies we observe in the modern universe formed when smaller galaxies merged. If this is correct, then we would expect to see evidence that the most ancient stars in nearby galaxies originated in different galactic environments. Because globular clusters hold ancient stars, and because of their stability, they are an excellent laboratory to test this hypothesis.

NGC 2005 is such a globular cluster, and its very existence provides evidence that supports the theory of galaxy evolution via mergers. Indeed, what makes NGC 2005 a bit peculiar from its surroundings, is the fact that its stars have a chemical composition that is distinct from the stars around it in the LMC. This suggests that the LMC underwent a merger with another galaxy somewhere in its history. That other galaxy has long-since merged and otherwise dispersed, but NGC 2005 remains behind as an ancient witness to the long-past merger.

Text Credit: European Space Agency (ESA)

Explore More

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Let’s Bake a Cosmic Cake!
      To celebrate what would have been the 100th birthday of Dr. Nancy Grace Roman — NASA’s first chief astronomer and the namesake for the agency’s nearly complete Nancy Grace Roman Space Telescope — we’re baking a birthday cake! This isn’t your ordinary birthday treat — this cosmic cake represents the contents of our universe and everything the Roman telescope will uncover.
      NASA’s Nancy Grace Roman Space Telescope Cosmic Cake NASA The outside of our cosmic cake depicts the sky as we see it from Earth—inky black and dotted with sparkling stars. The inside represents the universe as Roman will see it. This three-layer cake charts the mysterious contents of our universe — mostly dark energy, then dark matter, and finally just five percent normal matter. As you cut into our universe cake, out spills a candy explosion symbolizing the wealth of cosmic objects Roman will see.
      Roman Cosmic Cake Instructions
      Ingredients:
      Two boxes of vanilla cake mix and required ingredients Food coloring in three colors Black frosting Edible glitter Yellow sprinkles  Nonpareil sprinkle mix  Chocolate nonpareil candies  Popping candy  Miniature creme sandwich cookies  Granulated sugar  Sour candies  Dark chocolate chips  Jawbreakers  To make our cosmic cake, we first need to account for the universe’s building blocks — normal matter, dark matter, and dark energy. Comprising about five percent of the universe, normal matter is the stuff we see around us every day, from apples to stars in the sky. Outnumbering normal matter by five times, dark matter is an invisible mass that makes up about 25 percent of the universe. Finally, dark energy — a mysterious something accelerating our universe’s expansion — makes up about 68 percent of the cosmos.
      No one knows what dark matter and dark energy truly are, but we know they exist due to their effects on the universe. Roman will provide clues to these puzzles by 3D mapping matter alongside the expansion of the universe through time. 
      To depict the universe’s building blocks in our cosmic cake, mix the cake batter according to your chosen recipe. Pour one-fourth of the batter into one bowl for the dark matter layer, a little less than three-fourths into another bowl for dark energy, and the remainder into a separate bowl for normal matter. This will give you the quantities of batter for dark energy and dark matter, respectively. Use the remainder to represent normal matter. Color each bowl of batter differently using food coloring, then pour them into three separate cake pans and bake. The different sized layers will have different baking times, so watch them carefully to ensure proper cooking.
      While our cake bakes, we’ll create the cosmic candy mix — the core of our cake that represents the universe’s objects that Roman will uncover.
      First, pour yellow sprinkles into a bowl to symbolize the billions of stars Roman will see, including once-hidden stars on the far side of the Milky Way thanks to its ability to see starlight through gas and dust. 
      Roman’s data will also allow scientists to map gas and dust for the most complete picture yet of the Milky Way’s structure and how it births new stars. Add some granulated sugar to the candy mix as gas and dust.
      Next, add nonpareil sprinkles and chocolate nonpareil candies to symbolize galaxies and galaxy clusters. Roman will capture hundreds of millions of galaxies, precisely measuring their positions, shapes, sizes, and distances. By studying the properties of so many galaxies, scientists will be able to chart dark matter and dark energy’s effects more accurately than ever before.
      Now, add popping candies as explosive star deaths. Roman will witness tens of thousands of a special kind called type Ia supernovae. By studying how fast type Ia supernovae recede from us at different distances, scientists will trace cosmic expansion to better understand whether and how dark energy has changed throughout time.
      Supernovae aren’t the only stellar remnants that Roman will see. To represent neutron stars and black holes, add in jawbreakers and dark chocolate chips. Neutron stars are the remnants of massive stars that collapsed to the size of a city, making them the densest things we can directly observe. 
      The densest things we can’t directly observe are black holes. Most black holes are formed when massive stars collapse even further to a theoretical singular point of infinite density. Sometimes, black holes form when neutron stars merge—an epic event that Roman will witness. 
      Roman is also equipped to spot star-sized black holes in the Milky Way and supermassive black holes in other galaxies. Some supermassive black holes lie at the center of active galaxies—the hearts of which emit excessive energy compared to the rest of the galaxy. For these active cores, also spotted by Roman, add sour candies to the mix.
      Finally, add both whole and crushed miniature creme sandwich cookies to represent distant planets and planets-to-be. Peering into the center of our galaxy, Roman will scan for warped space-time indicating the presence of other worlds. The same set of observations could also reveal more than 100,000 more planets passing in front of other stars. Additionally, the Coronagraph Instrument will directly image both worlds and dusty disks around stars that can eventually form planets.
      After baking, remove the cake layers from the oven to cool. Cut a hole in the center of the thicker dark matter and dark energy layers. Then, stack these two layers using frosting to secure them. Pour the cosmic candy mix into the cake’s core. Then, place the thin normal matter layer on top, securing it with frosting. Frost the whole cake in black and dust it with edible glitter.
      Congratulations — your Roman Cosmic Cake is complete! As you look at the cake’s exterior, think of the night sky. As you slice the cake, imagine Roman’s deeper inspection to unveil billions of cosmic objects and clues about our universe’s mysterious building blocks.
      By Laine Havens
      NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated May 15, 2025 Related Terms
      Nancy Grace Roman Space Telescope For Kids and Students View the full article
    • By NASA
      6 min read
      NASA Observes First Visible-light Auroras at Mars
      On March 15, 2024, near the peak of the current solar cycle, the Sun produced a solar flare and an accompanying coronal mass ejection (CME), a massive explosion of gas and magnetic energy that carries with it large amounts of solar energetic particles. This solar activity led to stunning auroras across the solar system, including at Mars, where NASA’s Perseverance Mars rover made history by detecting them for the first time from the surface of another planet.
      The first visible-light image of green aurora on Mars (left), taken by the Mastcam-Z instrument on NASA’s Perseverance Mars rover. On the right is a comparison image of the night sky of Mars without aurora but featuring the Martian moon Deimos. The moonlit Martian night sky, lit up mostly by Mars’ nearer and larger moon Phobos (outside the frame) has a reddish-brown hue due to the dust in the atmosphere, so when green auroral light is added, the sky takes on a green-yellow tone, as seen in the left image. NASA/JPL-Caltech/ASU/MSSS/SSI “This exciting discovery opens up new possibilities for auroral research and confirms that auroras could be visible to future astronauts on Mars’ surface.” said Elise Knutsen, a postdoctoral researcher at the University of Oslo in Norway and lead author of the Science Advances study, which reported the detection.
      Picking the right aurora
      On Earth, auroras form when solar particles interact with the global magnetic field, funneling them to the poles where they collide with atmospheric gases and emit light. The most common color, green, is caused by excited oxygen atoms emitting light at a wavelength of 557.7 nanometers. For years, scientists have theorized that green light auroras could also exist on Mars but suggested they would be much fainter and harder to capture than the green auroras we see on Earth.
      Due to the Red Planet’s lack of a global magnetic field, Mars has different types of auroras than those we have on Earth. One of these is solar energetic particle (SEP) auroras, which NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) mission discovered in 2014. These occur when super-energetic particles from the Sun hit the Martian atmosphere, causing a reaction that makes the atmosphere glow across the whole night sky.
      While MAVEN had observed SEP auroras in ultraviolet light from orbit, this phenomenon had never been observed in visible light from the ground. Since SEPs typically occur during solar storms, which increase during solar maximum, Knutsen and her team set their sights on capturing visible images and spectra of SEP aurora from Mars’ surface at the peak of the Sun’s current solar cycle.
      Coordinating the picture-perfect moment
      Through modeling, Knutsen and her team determined the optimal angle for the Perseverance rover’s SuperCam spectrometer and Mastcam-Z camera to successfully observe the SEP aurora in visible light. With this observation strategy in place, it all came down to the timing and understanding of CMEs.
      “The trick was to pick a good CME, one that would accelerate and inject many charged particles into Mars’ atmosphere,” said Knutsen.
      That is where the teams at NASA’s Moon to Mars (M2M) Space Weather Analysis Office and the Community Coordinated Modeling Center (CCMC), both located at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, came in. The M2M team provides real-time analysis of solar eruptions to the CCMC for initiating simulations of CMEs to determine if they might impact current NASA missions. When the simulations suggest potential impacts, the team sends out an alert.
      At the University of California, Berkeley, space physicist Christina Lee received an alert from the M2M office about the March 15, 2024, CME. Lee, a member of the MAVEN mission team who serves as the space weather lead, determined there was a notable solar storm heading toward the Red Planet,which could arrive in a few days. She immediately issued the Mars Space Weather Alert Notification to currently operating Mars missions.
      “This allows the science teams of Perseverance and MAVEN to anticipate impacts of interplanetary CMEs and the associated SEPs,” said Lee.
      “When we saw the strength of this one,” Knutsen said, “we estimated it could trigger aurora bright enough for our instruments to detect.”
      A few days later, the CME impacted Mars, providing a lightshow for the rover to capture, showing the aurora to be nearly uniform across the sky at an emission wavelength of exactly 557.7 nm. To confirm the presence of SEPs during the aurora observation, the team looked to MAVEN’s SEP instrument, which was additionally corroborated by data from ESA’s (European Space Agency) Mars Express mission. Data from both missions confirmed that the rover team had managed to successfully catch a glimpse of the phenomenon in the very narrow time window available.
      “This was a fantastic example of cross-mission coordination. We all worked together quickly to facilitate this observation and are thrilled to have finally gotten a sneak peek of what astronauts will be able to see there some day,” said Shannon Curry, MAVEN principal investigator and research scientist at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder (CU Boulder).
      The future of aurora on Mars
      By coordinating the Perseverance observations with measurements from MAVEN’s SEP instrument, the teams could help each other determine that the observed 557.7 nm emission came from solar energetic particles. Since this is the same emission line as the green aurora on Earth, it is likely that future Martian astronauts would be able to see this type of aurora.
      “Perseverance’s observations of the visible-light aurora confirm a new way to study these phenomena that’s complementary to what we can observe with our Mars orbiters,” said Katie Stack Morgan, acting project scientist for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “A better understanding of auroras and the conditions around Mars that lead to their formation are especially important as we prepare to send human explorers there safely.”
      On September 21, 2014, NASA’s MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft entered orbit around Mars. The mission has produced a wealth of data about how Mars’ atmosphere responds to the Sun and solar wind NASA/JPL-Caltech More About Perseverance and MAVEN
      The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet. NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
      The MAVEN mission, also part of NASA’s Mars Exploration Program portfolio, is led by LASP at CU Boulder. It’s managed by NASA’s Goddard Space Flight Center and was built and operated by Lockheed Martin Space, with navigation and network support from NASA’s JPL.

      By Willow Reed
      Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder
      Media Contact: 
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Share








      Details
      Last Updated May 14, 2025 Related Terms
      Mars Goddard Space Flight Center MAVEN (Mars Atmosphere and Volatile EvolutioN) View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Pinpoints Young Stars in Spiral Galaxy
      This NASA/ESA Hubble Space Telescope image features the spiral galaxy NGC 1317. ESA/Hubble & NASA, J. Lee and the PHANGS-HST Team In this image, the NASA/ESA Hubble Space Telescope peers into the spiral galaxy NGC 1317 in the constellation Fornax, located more than 50 million light-years from Earth. Visible in this galaxy image is a bright blue ring that hosts hot, young stars. NGC 1317 is one of a pair, but its rowdy larger neighbor, NGC 1316, lies outside Hubble’s field of view. Despite the absence of its neighboring galaxy, this image finds NGC 1317 accompanied by two objects from very different parts of the universe. The bright point ringed with a crisscross pattern is a star from our own galaxy surrounded by diffraction spikes, whereas the redder elongated smudge is a distant galaxy lying far beyond NGC 1317.
      The data presented in this image are from a vast observing campaign of hundreds of observations from Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys. Combined with data from the ALMA array in the Atacama Desert, these observations help astronomers chart the connections between vast clouds of cold gas and the fiercely hot, young stars that form within them. ALMA’s unparalleled sensitivity at long wavelengths identified vast reservoirs of cold gas throughout the local universe, and Hubble’s sharp vision pinpointed clusters of young stars, as well as measuring their ages and masses.
      Often the most exciting astronomical discoveries require this kind of telescope teamwork, with cutting-edge facilities working together to provide astronomers with information across the electromagnetic spectrum. The same applies to Hubble’s observations that laid the groundwork for the NASA/ESA/CSA James Webb Space Telescope’s scientific observations.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 14, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Hubble Science Highlights



      Science Behind the Discoveries


      View the full article
    • By NASA
      NASA Glenn Research Center senior materials research engineer Kim de Groh, who conducted research for Hubble Space Telescope servicing missions, shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Dennis Brown  April 24 marked the 35th anniversary of the launch of NASA’s Hubble Space Telescope. The iconic space observatory remains a household name —the most well-recognized and scientifically productive telescope in history. Engineers at NASA’s Glenn Research Center in Cleveland played a significant role in how the telescope functions today.  
      NASA’s Glenn Research Center researchers Kim de Groh, left, and Joyce Dever conducted research for Hubble Space Telescope servicing missions. De Groh shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Sara Lowthian-Hanna  NASA Glenn researchers assisted in all five Hubble servicing missions by testing damaged insulation, determining why it degraded in space, and recommending replacement materials.  
      One of those researchers, Kim de Groh, senior materials research engineer, shared some of that research in a special presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on May 8. She chronicled her Hubble experience with a presentation, a show-and-tell with samples directly from the telescope, and a Q&A addressing the audience’s Hubble-related questions. 
      Return to Newsletter Explore More
      1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
      Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available  
      Article 1 min ago 1 min read NASA Glenn Shows Students Temperature-Cooling Technology
      Article 2 mins ago View the full article
    • By USH
      In recent months, Earth has been experiencing a string of bizarre and unsettling phenomena. Massive power outages have struck Spain and Portugal, with similar blackouts occurring across the globe. Aircraft have inexplicably crashed or fallen from the sky. Lights - streetlamps, billboards, car headlights, even indoor lighting are flickering erratically, and the problem persists. 

      Power failures have disrupted air traffic control centers. Strange, unexplained noises have been heard coming from the sky. In parts of the U.S., blue rain has reportedly fallen. The Schumann Resonance, Earth’s natural electromagnetic frequency, has spiked dramatically. Most disturbing of all, now birds have been seen suddenly dropping dead, either mid-flight or while perched on power lines. 
      It feels as if the planet is enveloped in a powerful, unseen force, an invisible energy field swarming the Earth, disrupting both man-made and natural systems. But where is it coming from? 
      One theory suggests that we may be experiencing the delayed impact of a massive astronomical event that occurred thousands of years ago, such as a supernova, the cataclysmic explosion of a dying star. These cosmic blasts release enormous amounts of electromagnetic radiation, including gamma rays and X-rays, which can travel across space for thousands or even millions of years before reaching other celestial bodies, like Earth. 
      Interestingly, some scientists have speculated that a gamma-ray burst from a distant supernova might have triggered the Ordovician mass extinction around 440 million years ago. If such radiation can wipe out entire ecosystems, could a similar event be silently influencing the strange phenomena we're seeing today? 
      It might sound improbable, but what if Earth is now being bathed in residual energy from a long-past cosmic event, energy that is only just now arriving and interacting with our atmosphere and technology? 
      And if that's true… could these strange occurrences be the early signs of something even more serious to come? 
      Additional: MrMBB333, a well-known YouTuber, is also closely following these remarkable events. He shares daily live footage from around the world and often questions what is truly happening. In his latest video below he shares the mystery of the birds dropping dead while perched on power lines.
         
      You can watch his videos on his YouTube channel: https://www.youtube.com/user/MrMBB333/videosView the full article
  • Check out these Videos

×
×
  • Create New...