Jump to content

California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge


Recommended Posts

  • Publishers
Posted
4 Min Read

California Teams Win $1.5 Million in NASA’s Break the Ice Lunar Challenge

A man in a yellow vest, hat, and backpack uses a controller to drive his robot up a 30 degree incline outdoors.

By Savannah Bullard

After two days of live competitions, two teams from southern California are heading home with a combined $1.5 million from NASA’s Break the Ice Lunar Challenge

A older man and wife stand in green shirts holding a large check for a million dollars after winning NASA's Break the Ice Lunar Challenge
The husband-and-wife duo of Terra Engineering, Valerie and Todd Mendenhall, receive the $1 million prize Wednesday, June 12, for winning the final phase of NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville, Alabama. With the Terra Engineering team at the awards ceremony are from left Daniel K. Wims, Alabama A&M University president; Joseph Pelfrey, NASA Marshall Space Flight center director; NASA’s Break the Ice Challenge Manager Naveen Vetcha; and Majed El-Dweik, Alabama A&M University’s vice president of research & economic development.
NASA/Jonathan Deal

Since 2020, competitors from around the world have competed in this challenge with the common goal of inventing robots that can excavate and transport the icy regolith on the Moon. The lunar South Pole is the targeted landing site for crewed Artemis missions, so utilizing all resources in that area, including the ice within the dusty regolith inside the permanently shadowed regions, is vital for the success of a sustained human lunar presence.

On Earth, the mission architectures developed in this challenge aim to help guide machine design and operation concepts for future mining and excavation operations and equipment for decades.

“Break the Ice represents a significant milestone in our journey toward sustainable lunar exploration and a future human presence on the Moon,” said Joseph Pelfrey, Center Director of NASA’s Marshall Space Flight Center. “This competition has pushed the boundaries of what is possible by challenging the brightest minds to devise groundbreaking solutions for excavating lunar ice, a crucial resource for future missions. Together, we are forging a future where humanity ventures further into the cosmos than ever before.”

The final round of the Break the Ice competition featured six finalist teams who succeeded in an earlier phase of the challenge. The competition took place at the Alabama A&M Agribition Center in Huntsville, Alabama, on June 11 and 12, where each team put their diverse solutions to the test in a series of trials, using terrestrial resources like gravity-offloading cranes, concrete slabs, and a rocky track with tricky obstacles to mimic the environment on the Moon.

Thehusband-and-wife duo of Terra Engineering took home the top prize for their “Irresistible Object” rover. Team lead Todd Mendenhall competed in NASA’s 2007 Regolith Excavation Challenge, facilitated through NASA’s Centennial Challenges, which led him and Valerie Mendenhall to continue the pursuit of solutions for autonomous lunar excavation.

breaktheicerunnerup.jpg?w=2048
Starpath Robotics earned the second place prize for its four-wheeled rover that can mine, collect, and haul material during the final phase of NASA’s Break the Ice Lunar Challenge at Alabama A&M’s Agribition Center in Huntsville, Alabama. From left are Matt Kruszynski, Saurav Shroff, Matt Khudari, Alan Hsu, David Aden, Mihir Gondhalekarl, Joshua Huang and Aakash Ramachandran.
NASA/Jonathan Deal

A small space hardware business, Starpath Robotics, earned the second-place prize for its four-wheeled rover that can mine, collect, and haul material. The team, led by Saurav Shroff and lead engineer Mihir Gondhalekar, developed a robotic mining tool that features a drum barrel scraping mechanism for breaking into the tough lunar surface. This allows the robot to mine material quickly and robustly without sacrificing energy.

“This challenge has been pivotal in advancing the technologies we need to achieve a sustained human presence on the Moon,” said Kim Krome, the Acting Program Manager for NASA’s Centennial Challenges. “Terra Engineering’s rover, especially, bridged several of the technology gaps that we identified – for instance, being robust and resilient enough to traverse rocky landscapes and survive the harsh conditions of the lunar South Pole.”

Beyond the $1.5 million in prize funds, three teams will be given the chance to use Marshall Space Flight Center’s thermal vacuum (TVAC) chambers to continue testing and developing their robots. These chambers use thermal vacuum technologies to create a simulated lunar environment, allowing scientists and researchers to build, test, and approve hardware for flight-ready use.

The following teams performed exceptionally well in the excavation portion of the final competition, earning these invitations to the TVAC facilities:

  • Terra Engineering (Gardena, California)
  • Starpath Robotics (Hawthorne, California)
  • Michigan Technological University – Planetary Surface Technology Development Lab (Houghton, Michigan)

“We’re looking forward to hosting three of our finalists at our thermal vacuum chamber, where they will get full access to continue testing and developing their technologies in our state-of-the-art facilities,” said Break the Ice Challenge Manager Naveen Vetcha, who supports NASA’s Centennial Challenges through Jacobs Space Exploration Group. “Hopefully, these tests will allow the teams to take their solutions to the next level and open the door for opportunities for years to come.”

NASA’s Break the Ice Lunar Challenge is a NASA Centennial Challenge led by the agency’s Marshall Space Flight Center, with support from NASA’s Kennedy Space Center in  Florida. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program under NASA’s Space Technology Mission Directorate. Ensemble Consultancy supports challenge competitors. Alabama A&M University, in coordination with NASA, supports the final competitions and winner event for the challenge.

For more information on Break the Ice, visit:

nasa.gov/breaktheice

Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala. 
256.544.0034  
jonathan.e.deal@nasa.gov 

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Students prepare their robots to enter Artemis Arena during NASA’s Lunabotics competition on May 20, 2025, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida. NASA/Isaac Watson As college students across the country embark upon the academic year, NASA is giving them something else to look forward to – the agency’s 2026 Lunabotics Challenge. Teams interested in participating can submit their applications and supporting materials through NASA’s Stem Gateway portal beginning Monday, Sept. 8.
      Key dates and challenge details are available in the 2026 Lunabotics Challenge Guidebook. Once all applications and supporting materials are received and evaluated, NASA will notify the selected teams to begin the challenge.
      Student teams participating in this year’s challenge will create robots capable of building berms out of lunar regolith – the loose, fragmental material on the Moon’s surface. Structures like these will be important during lunar missions as blast protection during lunar landings and launches, shading for cryogenic propellant tank farms, radiation shielding around nuclear power plants, and other uses critical to future Moon missions.
      “We are excited to continue the Lunabotics competition for universities as NASA develops new Moon to Mars technologies for the Artemis program,” said Robert Mueller, senior technologist at NASA, as well as co-founder and chief judge of the Lunabotics competition. “Excavating and moving regolith is a fundamental need to build infrastructure on the Moon and Mars and this competition creates 21st century skills in the future workforce.”
      An in-person qualifying event will be held May 12-17, 2026, at the University of Central Florida’s Space Institute’s Exolith Lab in Orlando. From this round, the top 10 teams will be invited to bring their robots to the final competition on May 19-21, at the Kennedy Space Center Visitor Complex’s Artemis Arena in Florida, which has an area filled with a lunar regolith simulant. The team scoring the most points will receive the Lunabotics Grand Prize and participate in an exhibition-style event at NASA Kennedy.
      By encouraging innovative construction techniques and assessing student designs and data the same way it does its own prototypes, NASA casts a wider net to find innovative solutions to challenges inherent in future Artemis missions, like developing future lunar excavators, in-situ resource utilization capabilities, and living on the Moon or Mars. With its multidisciplinary approach, Lunabotics also serves as a workforce pipeline, with teams gaining valuable hands-on experience in computer coding, engineering, manufacturing, fabricating, and other crucial skills, while also receiving technical expertise in space technology development.
      NASA’s Lunabotics Challenge, held annually since 2010, is one of several Artemis Student Challenges. The two-semester competition provides U.S. college and technical school teams an opportunity to design, build, and operate a prototype lunar robot using NASA systems engineering processes. Competitions help NASA get innovative design and operational data, reduce risks, and cultivate new ideas needed to return to the Moon under the Artemis campaign to prepare for human exploration of Mars.
      To learn more about Lunabotics, visit:
      https://www.nasa.gov/learning-resources/lunabotics-challenge/
      View the full article
    • By Amazing Space
      BLOOD MOON TONIGHT! Total Lunar Eclipse September 7, 2025 + 5 Amazing Moon Features You Can See!
    • By NASA
      This competition provides a hands-on opportunity for participants to gain critical skills in engineering, computing, electronics, and more that will be required for America’s technical workforce. If you are in sixth to 12th-grade at a U.S. public, private, or charter school – including those in U.S. territories – your challenge is to team up with your schoolmates and develop a science or technology experiment idea for one of the following NASA TechRise flight vehicles:
      Suborbital-Spaceship with approximately 3 minutes of microgravity. High-Altitude Balloon with approximately 4 to 8 hours of flight time at 70,000 to 95,000 feet and exposure to Earth’s atmosphere, high-altitude radiation, and perspective views of our planet. Award: $1,500 each to 60 winning teams
      Open Date: September 4, 2025
      Close Date: November 3, 2025
      For more information, visit: https://www.futureengineers.org/nasatechrise
      View the full article
    • By NASA
      NASA/Rachel Tilling Sea ice is frozen seawater that floats in the ocean. This photo, taken from NASA’s Gulfstream V Research Aircraft on July 21, 2022, shows Arctic sea ice in the Lincoln Sea north of Greenland.
      This image is the NASA Science Image of the Month for September 2025. Each month, NASA’s Science Mission Directorate chooses an image to feature, offering desktop wallpaper downloads, as well as links to related topics, activities, and games.
      Text and image credit: NASA/Rachel Tilling
      View the full article
    • By NASA
      The next era of lunar exploration demands a new kind of wheel – one that can sprint across razor-sharp regolith, shrug off extremely cold nights, and keep a rover rolling day after lunar day. The Rock and Roll with NASA Challenge seeks that breakthrough. If you can imagine a lightweight, compliant wheel that stays tough at higher speeds while carrying lots of  cargo, your ideas could set the pace for surface missions to follow. For this phased Challenge, Phase 1 rewards the best concepts and analyses, Phase 2 funds prototypes, and Phase 3 puts the best wheels through a live obstacle course simulating the lunar terrain. Along the way, you’ll receive feedback from NASA mobility engineers and the chance to see your hardware pushed to its limits.  In Phase 3, to prove concepts, NASA is using MicroChariot, a nimble, 45 kg test rover that will test the best designs from Phase 1 & Phase 2 at the Johnson Space Center Rockyard in Houston, Texas. Whether you’re a student team, a garage inventor, or a seasoned aerospace firm, this is your opportunity to rewrite the playbook of planetary mobility and leave tread marks on the future of exploration. Follow the challenge, assemble your crew, and roll out a solution that takes humanity back to the Moon.
      Award: $155,000 in total prizes
      Open Date: Phase 1 – August 28, 2025; Phase 2 – January 2026; Phase 3 – May 2026
      Close Date: Phase 1 – November 4, 2025; Phase 2 – April 2026; Phase 3 – June 2026
      For more information, visit: https://www.herox.com/NASARockandRoll
      View the full article
  • Check out these Videos

×
×
  • Create New...