Jump to content

Associate Administrator for the Science Mission Directorate Visits Partners in Spain, United Kingdom, Greece, and France


Recommended Posts

  • Publishers
Posted

5 min read

Associate Administrator for the Science Mission Directorate Visits Partners in Spain, United Kingdom, Greece, and France

A few weeks ago, I had the distinct pleasure of engaging with several of our strategic partners and friends across Europe. It was a full European tour: two weeks in Spain, the United Kingdom, Greece and France. Throughout the trip, I had many opportunities to discuss our exciting upcoming missions and the incredible impact NASA Science has on the world. 

In Madrid, I met with the U.S. Ambassador to Spain to discuss how scientific discovery is a global endeavor and how the Science Mission Directorate empowers the scientific community worldwide. I also met with the Director of the Madrid Deep Space Communications Complex to thank the team for their exceptional efforts in providing the vital communication link between Earth and our deep space explorers. The team is critical in supporting our NASA Science missions like Voyager, STEREO, New Horizons, Perseverance, James Webb, and Psyche just to name a few. They are also gearing up to support Europa Clipper which is launching  in October to study Jupiter’s icy moon for the first time.

nicky-notes1-06112024-2de2ca.jpg?w=695
In a historic first, all six radio frequency antennas at the Madrid Deep Space Communication Complex carried out a test to receive data from the agency’s Voyager 1 spacecraft at the same time on April 20, 2024.
Credits: MDSCC/INTA, Francisco “Paco” Moreno

Next, I toured the Leicester Space Park in the UK to discuss our ongoing collaborations with the University of Leicester and the United Kingdom Space Agency. In London, I presented at the Codex International Technology Leaders Network about our ongoing search for life in our solar system and beyond. I shared how our hunt for exoplanets and technosignurates are built upon the great legacy of telescopes like Keppler, Chandra, and Hubble. These telescopes, and the incredibly powerful James Webb Space Telescope, are laying the groundwork for the eventual launch of the Habitable Worlds Observatory, the first space telescope that would be designed to find life as we know it outside our solar system, while exploring broader secrets of the universe. It was a unique opportunity also talk about the intersections between the search for life and our own work here at home to understand our changing climate and accessible science. I also got the chance to explore the British Interplanetary Society’s extensive collection of space artifacts before taking off for Greece.

In Greece, I visited the sacred island of Delos – the birthplace of the mythical twin gods Apollo and Artemis – to participate in the Alpha Mission Delos Global Gathering. The mission of Alpha Mission Delos is to raise awareness around the climate crisis and calls to action people from all walks of life. What is incredibly special about Delos is that it is an open museum with history all around, and allowed us to see first-hand the effects climate change and rising sea levels have had on the ancient ruins that were once the cosmopolitan epicenter in the Mediterranean. I also witnessed archaeological sites that are now being re-buried so that they may be preserved for future generations to study. It reminded me of the need to preserve environments, here at home, but also as we go back to the Moon and on to Mars. The Artemis Accords, of which Greece is a signatory, will help us do just that.

A woman giving a speech outdoors, standing at a clear podium with two microphones. She is wearing a black blazer with a purple shirt and gesturing with her hands. There are blurred people and rocks in the background.
NASA’s Associate Administrator for the Science Mission Directorate Nicky Fox speaks at the World Human Forum on the island of Delos, Greece on May 15 2024.
Credits: World Human Forum

Throughout my days at the Gathering, we discussed the intersections between science, art, and the humanities. I shared how the Artemis program gives us the unique opportunity to understand that humanity will not succeed in addressing the challenges we are faced with today unless we combine the wisdom of the past with the knowledge and possibilities of today. With the Apollo program, we went to the Moon as a single nation, but with Artemis, we go together. To tackle challenges like Artemis and the impacts of a changing climate, we know how important it is to engage audiences and stakeholders that are not just scientists and engineers, and make them feel part of the mission. I noted the importance of inclusive teams and inclusive science. Science is for everyone, and the whole-of-self approach is valuable for putting a mission into space, and using the data here on Earth, to understand our home and solar system and our place in it. We all have a unique role to play in humanity’s exploration of the cosmos and beyond. It was a powerful reminder that science and space truly connect us all. 

In France, it was a fitting to end my trip when I formally signed a new Memorandum of Understanding to expand NASA’s work on the ESA-led ExoMars Rosalind Franklin rover mission launching in 2028. The Rosalind Franklin rover’s unique drilling capabilities and onboard samples laboratory have outstanding scientific value in humanity’s search for evidence of past life on Mars. NASA supports the Rosalind Franklin mission to continue the strong partnership between the United States and Europe to explore the unknown in our solar system and beyond.

A man and a woman sitting at a table, both signing documents. The background has a banner reading
NASA’s Associate Administrator for the Science Mission Directorate Nicky Fox and ESA’s Director of Human and Robotic Exploration Daniel Neuenschwander sign an agreement on the Rosalind Franklin mission at ESA’s headquarters in Paris, France on May 16, 2024.
Credits: ESA/Damien Dos Santos

It was a whirlwind of a trip, but I learned so much about how we, together as countries, partners and friends, use the vantage point of space to achieve humanity’s journey in discovery about our home planet, our solar system neighborhood, and the unknown beyond to better understand our place in the cosmos from a scientific perspective. Together, let us remember to merge the experiences and talents from all walks of life and foster inclusion to conquer such an audacious goal.

Share

Details

Last Updated
Jun 11, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4586-4587: Straight Drive, Strategic Science
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on June 28, 2025 — Sol 4583, or Martian day 4,583 of the Mars Science Laboratory mission — at 03:20:22 UTC. NASA/JPL-Caltech Written by Scott VanBommel, Planetary Scientist at Washington University in St. Louis
      Earth planning date: Monday, June 30, 2025
      Our weekend drive placed Curiosity exactly where we had hoped: on lighter-toned, resistant bedrock we have been eyeing for close study. Curiosity’s workspace tosol did not contain any targets suitable for DRT. After a detailed discussion by the team, weighing science not only in tosol’s plan but the holiday-shifted sols ahead, the decision was made to perform contact science at the current workspace and then drive in the second sol of the plan.
      Normally, drives in the second sol of a two-sol plan are uncommon, as we require information on the ground to assess in advance of the next sol’s planning. At present however, the current “Mars time” is quite favorable, enabling Curiosity’s team to operate within “nominal sols” and receive the necessary data in time for Wednesday’s one-sol plan. DAN kicked off the first sol of the plan with a passive measurement, complemented by another in the afternoon and two more on the second sol. Arm activities focused on placing MAHLI and APXS on “La Paz” and “Playa Agua de Luna,” two lighter-toned, laminated rocks.
      The rest of the first sol was rounded out with ChemCam LIBS analyses on “La Joya” followed by further LIBS analyses on “La Vega” on the second sol, once Curiosity’s arm was out of the way of the laser. ChemCam and Mastcam additionally imaged “Mishe Mokwa” prior to the nearly straight drive of about 20 meters (about 66 feet). Environmental monitoring activities, imaging of the CheMin inlet cover, and a SAM EBT activity rounded out Curiosity’s efforts on the second sol.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jul 01, 2025 Related Terms
      Blogs Explore More
      3 min read An Update From the 2025 Mars 2020 Science Team Meeting


      Article


      2 hours ago
      2 min read Curiosity Blog, Sols 4584–4585: Just a Small Bump


      Article


      1 day ago
      4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      An Update From the 2025 Mars 2020 Science Team Meeting
      A behind-the-scenes look at the annual Mars 2020 Science Team Meeting
      Members of the Mars 2020 Science Team examine post-impact sediments within the Gardnos impact structure, northwest of Oslo, Norway, as part of the June 2025 Science Team Meeting. NASA/Katie Stack Morgan Written by Katie Stack Morgan, Mars 2020 Acting Project Scientist 
      The Mars 2020 Science Team gathered for a week in June to discuss recent science results, synthesize earlier mission observations, and discuss future plans for continued exploration of Jezero’s crater rim. It was also an opportunity to celebrate what makes this mission so special: one of the most capable and sophisticated science missions ever sent to Mars, an experienced and expert Science Team, and the rover’s many science accomplishments this past year.  
      We kicked off the meeting, which was hosted by our colleagues on the RIMFAX team at the University of Oslo, with a focus on our most recent discoveries on the Jezero crater rim. A highlight was the team’s in-depth discussion of spherules observed at Witch Hazel Hill, features which likely provide us the best chance of determining the origin of the crater rim rock sequence.   
      On the second day, we heard status updates from each of the science instrument teams. We then transitioned to a session devoted to “traverse-scale” syntheses. After 4.5 years of Perseverance on Mars and more than 37 kilometers of driving (more than 23 miles), we’re now able to analyze and integrate science datasets across the entire surface mission, looking for trends through space and time within the Jezero rock record. Our team also held a poster session, which was a great opportunity for in-person and informal scientific discussion.  
      The team’s modern atmospheric and environmental investigations were front and center on Day 3. We then rewound the clock, hearing new and updated analyses of data acquired during Perseverance’s earlier campaigns in Jezero’s Margin unit, crater floor, and western fan. The last day of the meeting was focused entirely on future plans for the Perseverance rover, including a discussion of our exploration and sampling strategy during the Crater Rim Campaign. We also looked further afield, considering where the rover might explore over the next few years.  
      Following the meeting, the Science Team took a one-day field trip to visit Gardnos crater, a heavily eroded impact crater with excellent examples of impact melt breccia and post-impact sediment fill. The team’s visit to Gardnos offered a unique opportunity to see and study impact-generated rock units like those expected on the Jezero crater rim and to discuss the challenges we have recognizing similar units with the rover on Mars. Recapping our Perseverance team meetings has been one of my favorite yearly traditions (see summaries from our 2022, 2023, and 2024 meetings) and I look forward to reporting back a year from now. As the Perseverance team tackles challenges in the year to come, we can seek inspiration from one of Norway’s greatest polar explorers, Fridtjof Nansen, who said while delivering his Nobel lecture, “The difficult is that which can be done at once; the impossible is that which takes a little longer.”
      Share








      Details
      Last Updated Jul 01, 2025 Related Terms
      Blogs Explore More
      2 min read Curiosity Blog, Sols 4584–4585: Just a Small Bump


      Article


      1 hour ago
      4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch


      Article


      3 days ago
      2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      NASA astronaut Anil Menon poses for a portrait at NASA’s Johnson Space Center in Houston. Credit: NASA/Josh Valcarcel NASA astronaut Anil Menon will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 75 crew member.
      Menon will launch aboard the Roscosmos Soyuz MS-29 spacecraft in June 2026, accompanied by Roscosmos cosmonauts Pyotr Dubrov and Anna Kikina. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Menon will conduct scientific investigations and technology demonstrations to help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Menon graduated with the 23rd astronaut class in 2024. After completing initial astronaut candidate training, he began preparing for his first space station flight assignment.
      Menon was born and raised in Minneapolis and is an emergency medicine physician, mechanical engineer, and colonel in the United States Space Force. He holds a bachelor’s degree in neurobiology from Harvard University in Cambridge, Massachusetts, a master’s degree in mechanical engineering, and a medical degree from Stanford University in California. Menon completed his emergency medicine and aerospace medicine residency at Stanford and the University of Texas Medical Branch in Galveston.
      In his spare time, he still practices emergency medicine at Memorial Hermann’s Texas Medical Center and teaches residents at the University of Texas’ residency program. Menon served as SpaceX’s first flight surgeon, helping to launch the first crewed Dragon spacecraft on NASA’s SpaceX Demo-2 mission and building SpaceX’s medical organization to support humans on future missions. He served as a crew flight surgeon for both SpaceX flights and NASA expeditions aboard the space station.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. 
      Learn more about International Space Station at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov   
      Share
      Details
      Last Updated Jul 01, 2025 LocationNASA Headquarters Related Terms
      Astronauts Humans in Space International Space Station (ISS) ISS Research View the full article
    • By NASA
      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Sigrid Reinsch, Lori Munar, Kevin Sims, and Matthew Fladeland. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Space Biosciences Star: Sigrid Reinsch
      As Director of the SHINE (Space Health Impacts for the NASA Experience) program and Project Scientist for NBISC (NASA Biological Institutional Scientific Collection), Sigrid Reinsch is a high-performing scientist and outstanding mentor in the Space Biosciences Research Branch. Her dedication to student training and her efforts to streamline processes have significantly improved the experience of welcoming summer interns at NASA Ames.

      Space Science and Astrobiology Star: Lori Munar
      Lori Munar serves as the assistant Branch Chief of the Exobiology Branch. In the past few months, she has gone above and beyond to organize a facility and laboratory surplus event that involved multiple divisions over multiple days. The event resulted in considerable savings across the groups involved and improved the safety of N239 staff and the appearance of offices and labs.
      Space Science and Astrobiology Star: Kevin Sims
      Kevin Sims is a NASA Technical Project Manager serving the Astrophysics Branch as a member of the Flight Systems Implementation Branch in the Space Biosciences Division. Kevin is recognized for outstanding project management for exoplanet imaging instrumentation development in support of the Habitable Worlds Observatory. Kevin has streamlined, organized, and improved the efficiency of the Ames Photonics Testbed being developed as part the AstroPIC Early Career Initiative project.
      Earth Science Star: Matthew Fladeland
      Matthew Fladeland is a research scientist in the Earth Science Division managing NASA SMD’s Program Office for the Airborne Science Program, located at Ames. He is recognized for exemplary leadership and teamwork leading to new reimbursable agreements with the Department of Defense, for accelerating science technology solutions through the SBIR program, and for advancing partnerships with the US Forest Service on wildland ecology and fire science.
      View the full article
    • By NASA
      NASA/Nichole Ayers A SpaceX Dragon spacecraft carrying the Axiom Mission 4 crew docks to the space-facing port of the International Space Station’s Harmony module on June 26. Axiom Mission 4 is the fourth all-private astronaut mission to the orbiting laboratory, welcoming commander Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, ISRO (Indian Space Research Organisation) astronaut and pilot Shubhanshu Shukla, and mission specialists ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland and HUNOR (Hungarian to Orbit) astronaut Tibor Kapu of Hungary.
      The crew is scheduled to remain at the space station, conducting microgravity research, educational outreach, and commercial activities, for about two weeks. This mission serves as an example of the success derived from collaboration between NASA’s international partners and American commercial space companies.
      Keep Exploring Discover More Topics From NASA
      Low Earth Orbit Economy
      Humans in Space
      Commercial Space
      Private Astronaut Missions
      View the full article
  • Check out these Videos

×
×
  • Create New...