Members Can Post Anonymously On This Site
Launching a Pair of Earth-Observing Small Satellites on This Week @NASA – May 31, 2024
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
GRX-810 is a new metal alloy developed by NASA for 3D printing parts that can withstand the extreme temperatures of rocket engines, allowing affordable printing of high-heat parts.NASA Until now, additive manufacturing, commonly known as 3D printing, of engine components was limited by the lack of affordable metal alloys that could withstand the extreme temperatures of spaceflight. Expensive metal alloys were the only option for 3D printing engine parts until NASA’s Glenn Research Center in Cleveland, Ohio, developed the GRX-810 alloy.
The primary metals in the GRX-810 alloy include nickel, cobalt, and chromium. A ceramic oxide coating on the powdered metal particles increases its heat resistance and improves performance. Known as oxide dispersion strengthened (ODS) alloys, these powders were challenging to manufacture at a reasonable cost when the project started.
However, the advanced dispersion coating technique developed at Glenn employs resonant acoustic mixing. Rapid vibration is applied to a container filled with the metal powder and nano-oxide particles. The vibration evenly coats each metal particle with the oxide, making them inseparable. Even if a manufactured part is ground down to powder and reused, the next component will have the qualities of ODS.
The benefits over common alloys are significant – GRX-10 could last up to a year at 2,000°F under stress loads that would crack any other affordable alloy within hours. Additionally, 3D printing parts using GRX-810 enables more complex shapes compared to metal parts manufactured with traditional methods.
Elementum 3D, an Erie, Colorado-based company, produces GRX-810 for customers in quantities ranging from small batches to over a ton. The company has a co-exclusive license for the NASA-patented alloy and manufacturing process and continues to work with the agency under a Space Act Agreement to improve the material.
“A material under stress or a heavy load at high temperature can start to deform and stretch almost like taffy,” said Jeremy Iten, chief technical officer with Elementum 3D. “Initial tests done on the large-scale production of our GRX-810 alloy showed a lifespan that’s twice as long as the small-batch material initially produced, and those were already fantastic.”
Commercial space and other industries, including aviation, are testing GRX-810 for additional applications. For example, one Elementum 3D customer, Vectoflow, is testing a GRX-810 flow sensor. Flow sensors monitor the speed of gases flowing through a turbine, helping engineers optimize engine performance. However, these sensors can burn out in minutes due to extreme temperatures. Using GRX-810 flow sensors could improve airplane fuel efficiency, reduce emissions and hardware replacements.
Working hand-in-hand with industry, NASA is driving technology developments that are mutually beneficial to the agency and America’s space economy. Learn more: https://spinoff.nasa.gov/
Read More Share
Details
Last Updated Aug 15, 2025 Related Terms
Technology Transfer & Spinoffs Glenn Research Center Spinoffs Technology Transfer Explore More
2 min read NASA Seeks Industry Feedback on Fission Surface Power
Article 22 hours ago 2 min read NASA Glenn Earns Commercial Invention of the Year Award
Article 1 day ago 2 min read NASA Glenn Shoots for the Stars During WNBA All-Star Weekend
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Glenn Research Center
3D-Printed Habitat Challenge
View the full article
-
By European Space Agency
Week in images: 11-15 August 2025
Discover our week through the lens
View the full article
-
By NASA
Dr. Steven “Steve” Platnick stepped down from his role at NASA on August 8, 2025, after more than three decades of public service. Steve began his career at NASA as a physical scientist at Goddard Space Flight Center in 2002. He moved to the Earth Science Division in 2009, where he has served in various senior management roles, including as the Earth Observing System (EOS) Senior Project Scientist. In this role, he led the EOS Project Science Office and continued periodic meetings of the EOS Project Scientists, initiated by Michael King during his tenure. Steve expanded these meetings to include representatives of non-EOS Earth observing missions and representatives from Earth Science Mission Operations (ESMO). In addition, Steve was named Deputy Director for Atmospheres in the Earth Science Division in January 2015 and served in this position until July 2024.
Dr. Steve Platnick Image credit: NASA During his time at NASA, Steve played an integral role in the development, sustainability, and advancement of NASA’s Earth Observing System platforms. From January 2003 – February 2010, Steve served as Deputy Project Scientist for Aqua. In this role, he applied his expertise in theoretical and experimental studies of satellite, aircraft, and ground-based cloud remote sensing to improve algorithms to benefit the data gathered from remote observing systems.
Taking the Lead to Improve Algorithms
Steve was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team, serving as the MODIS Atmosphere Team Lead. Steve helped advance several key components of the MODIS instrument, which flies on NASA’s Terra and Aqua platforms. He led a team that enhanced, maintained, and evaluated MODIS algorithms that support the Level-2 (L2) Cloud Optical/Microphysical Properties components (e.g., COD06 and MYD06) for MODIS on Terra and Aqua. The algorithms were designed to retrieve thermodynamic phase, optical thickness, effective particle radius, and water path for liquid and ice clouds. The team’s work also contributes to L3 products that address cloud mask, aerosols, clouds, and clear sky radiance for data within 1° grids over one-day, eight-day, and one-month repeat cycles. Under Steve’s leadership, the team also developed L2 products (e.g., MODATML2 and MYDATML2) that include essential atmosphere datasets of samples collected at 5–10 km (3–6 mi) that is consistent with L3 products to ease storage requirements of core atmospheric data.
Steve is also a member of the Suomi-National Polar-orbiting Partnership (Suomi NPP) Atmosphere Team, working on operational cloud optical and microphysical products. In this role, he contributed to algorithm development and refinement for the Cloud Product. In particular, he helped address a critical gap in the Visible Infrared Imaging Radiometer Suite (VIIRS) spectral channel, which was not designed to collect information for carbon dioxide (CO2) slicing and water vapor data in the same way as MODIS. Steve and his colleagues developed a suite of L2 algorithms for the spectral channels that were common to both MODIS and VIIRS to address cloud mask and cloud optical/microphysical properties. Through these efforts, the project has established a continuous cloud data record gathered from both instruments from 2017 to the present.
Steve also participated in numerous other working groups during the past 30 years. He participated in the Global Energy and Water Exchanges (GEWEX) Cloud Assessment Working Group (2008–present), Arctic Radiation-Cloud-Aerosol-Surface Interaction Experiment (ARCSIX) Science Team (2023–present), ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) Earth–Venture Suborbital (EVS)-2 Science Team (2014–2023), Deep Space Climate Observatory (DSCOVR) Science Team (2014–present), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Science Team (2014–2023), PACE Science Definition Team, Deputy Chair (2011–2012), Glory Science Team (2010–2014) NASA Observations for Modeling Intercomparison Studies (obs4MIPs) Working Group (2011), Advanced Composition Explorer (ACE) Science Definition Team (2009–2011), and Geostationary Operational Environmental Satellites (GOES) R-series Advanced Baseline Imager (ABI) Cloud Team (2005–2009).
Steve has also participated in numerous major airborne field campaigns in various roles, including: GSFC Lidar Observation and Validation Experiment (GLOVE, 2025), PACE Postlaunch Airborne eXperiment (PAX, 2024), the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment (WH2yMSIE, 2024), ORACLES Science Team (2015–2019), Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) Science Team (2011–2015), Tropical Composition, Cloud and Climate Coupling (TC4) Management Team (2007), Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment (CRYSTAL-FACE) Science Management Team (2002), Southern Africa Fire-Atmosphere Research Initiative (SAFARI, 2000), First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE) (1998), Mikulski Archive for Space Telescopes (MAST, 1994), and ACE (1992).
Supporting Earth Science Communications
Through his senior leadership roles within ESD Steve has been supportive of the activities of NASA’s Science Support Office (SSO). He has participated in many NASA Science exhibits at both national and international scientific conferences, including serving as a Hyperwall presenter numerous times. He has met with task leaders frequently and has advocated on behalf of the SSO to management at NASA Headquarters, GSFC, and Global Sciences & Technology Inc.
For The Earth Observer newsletter publication team in particular, Steve replaced Michael King as Acting EOS Senior Project Scientist in June 2008, taking over the authorship of “The Editor’s Corner” beginning with the May–June 2008 issue [Volume 20, Issue 3]. The Acting label was removed beginning with the January–February 2010 issue [Volume 22, Issue 1]. Steve has been a champion of continuing to retain a historical record of NASA meetings to maintain a chronology of advances made by different groups within the NASA Earth Science community. He was supportive of the Executive Editor’s efforts to create a series called “Perspectives on EOS,” which ran from 2008–2011 and told the stories of the early years of the EOS Program from the point of view of those who lived them. He also supported the development of articles to commemorate the 25th and 30th anniversary of The Earth Observer. Later, Steve helped guide the transition of the newsletterfrom a print publication – the November–December 2022 issue was the last printed issue – to fully online by July 2024, a few months after the publication’s 35th anniversary. The Earth Observer team will miss Steve’s keen insight, historical perspective, and encouragement that he has shown through his leadership for the past 85 issues of print and online publications.
A Career Recognized through Awards and Honors
Throughout his career, Steve has amassed numerous honors, including the Robert H. Goddard Award for Science: MODIS/VIIRS Cloud Products Science Team (2024) and the William Nordberg Memorial Award for Earth Science in 2023. He received the Verner E. Suomi Award from the American Meteorological Society (AMS) in 2016 and was named an AMS Fellow that same year.
Steve has received numerous NASA Group Achievement Awards, including for the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) Field Campaign Team (2020), Fire Influence of Regional to Global Environments and Air Quality (FIREX-AQ) Field Campaign Team (2020), ORACLES Field Campaign Team (2019), obs4MIPs Working Group (2015), SEAC4RS Field Campaign Team (2015), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) Instrument Recovery Team (2013), Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission Concept Team (2012), Earth Science Constellation Red Team (2011), Science Mission Directorate ARRA Team (2011), TC4 Team (2009), MODIS Science Data Support Team (2007), Aqua Mission Team (2003), CRYSTAL-FACE Science Team (2003), and SAFARI 2000 International Leadership Team (2002).
Steve received two NASA Agency Honor Awards – the Exceptional Service Medal in 2015 and the Exceptional Achievement Medal in 2008. He was also part of the NASA Agency Team Excellence Award in 2017 for his work with the Satellite Needs Assessment Team. The Laboratory for Atmospheres honored him with the Best Senior Author Publication Award in 2001 and the Scientific Research Peer Award in 2005.
Steve received his bachelor’s degree and master’s degree in electrical engineering from Duke University and the University of California, Berkeley, respectively. He earned a Ph.D. in atmospheric sciences from the University of Arizona. He began his career at the Joint Center for Earth Systems Technology (JCET) at University of Maryland Baltimore County in 1996 as a research associate professor. He held this appointment until 2002. Steve has published more than 150 scholarly articles.
View the full article
-
By NASA
NASA announced 10 winning teams for its latest TechLeap Prize — the Space Technology Payload Challenge — on June 26. The winners emerged from a record-breaking field of more than 200 applicants to earn cash prizes worth up to $500,000, if they have a flight-ready unit. Recipients may also have the opportunity to flight test their technologies.
NASA’s Biological and Physical Sciences (BPS) division is supporting the emerging space economy through challenges like TechLeap. The projects receive funding through the Commercially Enabled Rapid Space Science (CERISS) initiative, which pairs government research goals with commercial innovation.
Two awardees’ capabilities specifically address BPS research priorities, which include conducting investigations that inform future space crops and advance precision health.
Ambrosia Space Manufacturing Corporation is developing a centrifuge system to separate nutrients from cell cultures — potentially creating space-based food processing that could turn algae into digestible meals for astronauts.
Helogen Corporation is building an automated laboratory system that can run biological experiments without requiring astronaut involvement and may be able to transmit real-time data to researchers on Earth without having to wait for physical samples to return.
“The innovations of these small- and midsize businesses could enable NASA to accelerate the pace of critical research,” says Dan Walsh, BPS’s program executive for CERISS. “It’s also an example of NASA enabling the emerging space industry to grow and thrive beyond big corporations.”
Small Packages with Big Ambitions
Every inch and ounce counts on a spacecraft, which means the winning teams have to think small while solving big problems.
Commercial companies play a pivotal role in enabling space-based research — they bring fresh approaches to ongoing challenges. But space missions demand a different kind of innovation, and TechLeap teams face both time and size constraints for their experiments.
Winners have six to nine months to demonstrate that their concepts work. That’s a significant contrast from traditional space technology development, which can stretch for years.
The research serves a larger purpose as well. The technology helps NASA “know before we go” on longer, deep-space missions to the Moon and Mars. Understanding how technologies behave in microgravity or extreme environments can prevent costly failures when astronauts are far from Earth.
Small investments in proof-of-concept technologies can bring in a high ROI. With the TechLeap Prize, BPS is betting that big ideas will come in small packages.
Related Resources
TechLeap Prize – Space Technology Payload Challenge (STPC)
Space Technology Payload Challenge Winners
Commercially Enabled Rapid Space Science Initiative
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test undergoes a free flight test on the City Environment Range Testing for Autonomous Integrated Navigation range at NASA’s Langley Research Center in Hampton, Virginia on April 22, 2025.NASA/Rob Lorkiewicz Flying the friendly skies may one day include time-saving trips in air taxis to get from point A to point B – and NASA researchers are currently working to make that future a reality.
They are using wind tunnel and flight tests to gather data on an electric Vertical takeoff and landing (eVTOL) scaled-down small aircraft that resembles an air taxi that aircraft manufacturers can use for their own designs.
As air taxis take to the skies, engineers need real-world data on air taxi designs to better understand flight dynamics and design better flight control systems. These systems help stabilize and guide the motion of an aircraft while in flight, making sure it flies safely in various conditions.
Currently, most companies developing air taxis keep the information about how their aircraft behaves internal, so NASA is using this small aircraft to produce public, non-proprietary data available to all.
“NASA’s ability to perform high-risk flight research for increasingly automated and autonomous aircraft is really important,” said Siena Whiteside, who leads the Research Aircraft for eVTOL Enabling techNologies (RAVEN) project. “As we investigate these types of vehicles, we need to be able push the aircraft to its limits and understand what happens when an unforeseen event occurs…”
For example, Whiteside said, “…when a motor stops working. NASA is willing to take that risk and publish the data so that everyone can benefit from it.”
Researchers Jody Miller, left, and Brayden Chamberlain, right, stand by a crane that is used for tethered flight testing of the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Oct. 18, 2024.NASA/Ben Simmons Testing Air Taxi Tech
By using a smaller version of a full-sized aircraft called the RAVEN Subscale Wind Tunnel and Flight Test (RAVEN SWFT) vehicle, NASA is able to conduct its tests in a fast and cost-effective manner.
The small aircraft weighs 38 pounds with a wingspan of six feet and has 24 independently moving components.
Each component, called a “control effector,” can move during flight to change the aircraft’s motion – making it an ideal aircraft for advanced flight controls and autonomous flight research.
The testing is ongoing at NASA’s Langley Research Center in Hampton, Virginia.
Researchers first used the center’s 12-Foot Low-Speed Tunnel in 2024 and have since moved on to flight testing the small aircraft, piloting it remotely from the ground. During initial flight tests, the aircraft flew while tied to a tether. Now, the team performs free flights.
Lessons learned from the aircraft’s behavior in the wind tunnel helped to reduce risks during flight tests. In the wind tunnel, researchers performed tests that closely mirror the motion of real flight.
While the scale aircraft was in motion, researchers collected information about its flight characteristics, greatly accelerating the time from design to flight.
The team also could refine the aircraft’s computer control code in real time and upload software changes to it in under 5 minutes, saving them weeks and increasing the amount of data collected.
Researchers Ben Simmons, left, and Greg Howland, right, upload software changes in real time to the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Aug. 8, 2024, during testing in the 12-Foot Low-Speed Tunnel.NASA/David C. Bowman Partners in Research
NASA developed the custom flight controls software for RAVEN SWFT using tools from the company MathWorks.
NASA and MathWorks are partners under a Space Act Agreement to accelerate the design and testing of flight control approaches on RAVEN SWFT, which can apply to future novel aircraft.
The work has allowed NASA’s researchers to develop new methods to reduce the time for an aircraft to achieve its first flight and become a finished product.
RAVEN SWFT serves as a steppingstone to support the development of a potential larger, 1,000 pound-class RAVEN aircraft that will resemble an air taxi.
This larger RAVEN aircraft is being designed in collaboration with Georgia Institute of Technology and also would serve as an acoustical research tool, helping engineers understand the noise air taxi-like aircraft create.
The larger aircraft would allow NASA to continue to collect data and share it openly.
By performing flight research and making its data publicly available, NASA aims to advance U.S. leadership in technology development for safe, quiet, and affordable advanced air mobility operations.
Watch this Air Taxi Tests Video
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
4 min read NASA Seeks Moon and Mars Innovations Through University Challenge
Article 14 hours ago 3 min read NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing
Article 7 days ago 3 min read Three NASA Langley Employees Win Prestigious Silver Snoopy Awards
Article 7 days ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Aug 13, 2025 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.govLocationNASA Langley Research Center Related Terms
Aeronautics Advanced Air Mobility Aeronautics Research Mission Directorate Drones & You Flight Demos Capabilities Integrated Aviation Systems Program Langley Research Center NASA Aircraft Transformational Tools Technologies Transformative Aeronautics Concepts Program View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.