Jump to content

Mountain Rain or Snow Volunteers Broke Records This Winter


Recommended Posts

  • Publishers
Posted

1 min read

Mountain Rain or Snow Volunteers Broke Records This Winter

The Mountain Rain or Snow project asks volunteers to track rain, snow, and mixed precipitation all winter long—and this was a winter like no other! This season, 1,684 people submitted precipitation observations—that’s about a third more than last season. These volunteers submitted over 32,110 observations, breaking last year’s record by over 10,000.

Some observers excelled by sending in hundreds of observations—Patrick Thorson submitted 676! Nayoung Hur’s observations spanned the largest elevational range, and Lauren H’s came from the highest peak at 11, 993 feet.

Congratulations to Patrick Thorson, Chris Gotschalk, SV, Karen O, Marley Jennings, Mariah Blackhorse, Robert R., Randall Bursk, Bill Locke, Erin Grogan, Lauren H., Craig Hall, and Nayoung Hur for their remarkable contributions. Thank you to all Mountain Rain or Snow observers for keeping your eyes on the sky with us this winter!

The Mountain Rain or Snow project still needs more data to improve weather and water sources forecasting.If you are in the U.S.A. and you are on or near a mountain,  visit www.rainorsnow.org/signup on your phone and select your region to join the project!

### Descriptive 508 Compliant Alt Text: This infographic provides an overview of the 2023-2024 Mountain Rain or Snow observation season. **Left Side: 2023-2024 At a Glance** - Total Observations: 32,110 - Snow: 18,455 - Mix (rain and snow): 3,593 - Rain: 10,062 - There were 1,684 active observers, which is 615 more than last season. - The most observations from a single storm were 2,099 from March 1-3, 2024. - The region that sent the most reports in one day was Sierra Nevada. **Right Side: 2023-2024 Shoutouts** - Top Regions by Reports: 1. Central Basin and Range: 5,517 reports 2. Northeastern Highlands: 4,566 reports 3. Sierra Nevada: 4,402 reports - Leaderboard of Observers: 1. Patrick Thorson, Sierra Nevada: 676 reports 2. Chris Gotschalk, Western Montana: 471 reports 3. SV, The Netherlands: 440 reports 4. Karen O, Rocky Mountains: 388 reports 5. Marley Jennings, Northeast US: 343 reports 6. Mariah Blackhorse, Great Basin: 329 reports 7. Robert R, Sierra Nevada: 284 reports 8. Randall Bursk, Rocky Mountains: 280 reports 9. Bill Locke, Western Montana: 279 reports 10. Erin Grogan, Northeast US: 271 reports - Average Observer across all regions: 19 reports **Elevational Diversity Superstars** - Greatest Variety of Elevations: Craig Hall, Sierra Nevada, submitted from various elevation ranges. - Highest Elevation: Lauren H, Rocky Mountains, at 11,993 ft. - Greatest Range of Elevations: Nayoung Hur, Rocky Mountains, with a range of 8,849 ft between highest and lowest reports.
Mountain Rain or Snow’s 2023-2024 winter season at a glance.
Image Credit: Sonia Tonino

Share

Details

Last Updated
Jun 05, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4525-4526: The Day After Groundhog Day (Between Ghost Mountain and Texoli, Headed South)
      NASA’s Mars rover Curiosity acquired this image showing ChemCam/Mastcam targets “Breeze Hill” and “Laguna Mountain,” together with a rover wheel planted firmly on the Martian surface. Curiosity captured the image using its Left Navigation Camera on April 27, 2025 — Sol 4523, or Martian day 4,523 of the Mars Science Laboratory mission — at 13:23:32 UTC. NASA/JPL-Caltech Written by Lucy Lim, Planetary Scientist at NASA Goddard Space Flight Center
      Earth planning date: Monday, April 28, 2025
      Curiosity is back on the road! For sols 4525 and 4526, we have an isolated nominal plan in which the communication pass timing works out in such a way that the rover can fit in fully targeted science blocks on both sols rather than just the first sol. So in this power-hungry Martian winter season, we’re in a good position to take advantage of the power saved up during the missed uplink.
      The weekend drive went well and delivered the rover into a stable, arm-work-compatible position in a workspace with rock targets that we could brush with the DRT. Happy days! The DRT/APXS/MAHLI measurements will bring us geochemical and rock texture data from local bedrock blocks “Bradshaw Trail” and “Sweetwater River.” Further geochemical information will come from the ChemCam LIBS rasters on a more coarsely layered target, “Breeze Hill,” and an exposed layer expressing both polygonal features and a vein or coating of dark-toned material, “Laguna Mountain.”  
      Long-distance imaging with the ChemCam RMI included a mosaic to add to our coverage of the boxwork sedimentary features of the type Curiosity will soon be exploring in situ. A second RMI mosaic was planned to cover a truncated sedimentary horizon on the Texoli butte that may provide further evidence of ancient aeolian scouring events.  Meanwhile, the “Morrell Potrero” Mastcam mosaic will provide some detail on the base of the boxwork-bearing “Ghost Mountain” butte and on a ridge nearby. In the drive direction, the “Garnet Peak” mosaic will capture some potentially new rock textures and colors in the upcoming strata.
      Nearer-field imaging in the plan includes Mastcam documentation of some troughs that provide evidence for sand and dust movement in response to the modern aeolian environment. Additionally Mastcam mosaics went to “Breeze Hill” (covering the LIBS target) and “Live Oak” to document variations in bedding, color, and texture in the nearby bedrock. 
      A few observations of the modern environment were scheduled for the afternoon: a phase function sky survey to look for scattered light from thin water-ice clouds and a separate set of cloud altitude observations.
      Finally, a Mastcam documentation image was planned for the AEGIS LIBS target from the weekend plan! This reflects an update to the rover’s capability in which the AEGIS target can be determined and downlinked in time for the decisional downlink pass, so that we know where to look for it during the next planning cycle.
      Share








      Details
      Last Updated Apr 30, 2025 Related Terms
      Blogs Explore More
      4 min read Sols 4522-4524: Up on the Roof


      Article


      1 day ago
      2 min read Searching for the Dark in the Light


      Article


      5 days ago
      3 min read Sols 4520-4521: Prinzregententorte


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Ice cover ebbs and flows through the seasons in the Arctic (left) and the Antarctic (right). Overall, ice cover has declined since scientists started tracking it half a century ago. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5099Trent Schindler/NASA’s Scientific Visualization Studio Winter sea ice cover in the Arctic was the lowest it’s ever been at its annual peak on March 22, 2025, according to NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder. At 5.53 million square miles (14.33 million square kilometers), the maximum extent fell below the prior low of 5.56 million square miles (14.41 million square kilometers) in 2017. 
      In the dark and cold of winter, sea ice forms and spreads across Arctic seas. But in recent years, less new ice has been forming, and less multi-year ice has accumulated. This winter continued a downward trend scientists have observed over the past several decades. This year’s peak ice cover was 510,000 square miles (1.32 million square kilometers) below the average levels between 1981 and 2010. 
      In 2025, summer ice in the Antarctic retreated to 764,000 square miles (1.98 million square kilometers) on March 1, tying for the second lowest minimum extent ever recorded. That’s 30% below the 1.10 million square miles (2.84 million square kilometers) that was typical in the Antarctic prior to 2010. Sea ice extent is defined as the total area of the ocean with at least 15% ice concentration.
      The reduction in ice in both polar regions has led to another milestone — the total amount of sea ice on the planet reached an all-time low. Globally, ice coverage in mid-February of this year declined by more than a million square miles (2.5 million square kilometers) from the average before 2010. Altogether, Earth is missing an area of sea ice large enough to cover the entire continental United States east of the Mississippi. 
      “We’re going to come into this next summer season with less ice to begin with,” said Linette Boisvert, an ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It doesn’t bode well for the future.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Observations since 1978 show that ice cover has declined at both poles, leading to a downward trend in the total ice cover over the entire planet. In February 2025, global ice fell to the smallest area ever recorded. Download this visualization from NASA's Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5521Mark Subbaro/NASA's Scientific Visualization Studio Scientists primarily rely on satellites in the Defense Meteorological Satellite Program, which measure Earth’s radiation in the microwave range. This natural radiation is different for open water and for sea ice — with ice cover standing out brightly in microwave-based satellite images. Microwave scanners can also penetrate through cloud cover, allowing for daily global observations. The DMSP data are augmented with historical sources, including data collected between 1978 and 1985 with the Nimbus-7 satellite that was jointly operated by NASA and the National Oceanic and Atmospheric Administration. 
      “It’s not yet clear whether the Southern Hemisphere has entered a new norm with perennially low ice or if the Antarctic is in a passing phase that will revert to prior levels in the years to come,” said Walt Meier, an ice scientist with NSIDC.

      By James Riordon
      NASA’s Earth Science News Team

      Media contact: Elizabeth Vlock
      NASA Headquarters
      Share
      Details
      Last Updated Mar 27, 2025 LocationNASA Goddard Space Flight Center Related Terms
      Earth Earth's Vital Signs General Explore More
      1 min read Arctic Sea Ice Near Historic Low; Antarctic Ice Continues Decline
      This summer, Arctic sea ice decreased to a its minimum extent on September 11, 2024.…
      Article 6 months ago 1 min read Keeping PACE with the Oceans
      NASA can detect tiny organisms, phytoplankton, that affect the color of ocean from space, and…
      Article 9 months ago 1 min read Antarctic Sea Ice Hits Annual Minimum, Second Lowest On Record
      On February 20th, 2024, Antarctic sea ice officially reached its minimum extent for the year.
      Article 1 year ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System

      View the full article
    • By Space Force
      The TRICARE Online Patient Portal will no longer be available April 1.To retain health records, download them from the TOL Patient Portal before April 1.

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
      Sols 4458-4460: Winter Schminter
      NASA’s Mars rover Curiosity captured this image of the Texoli butte, a Martian landmark about 525 feet (160 meters) tall, with many layers that scientists are studying to learn more about the formation of this region of the Red Planet. The butte is on the 3-mile-high Mount Sharp, inside Gale Crater, where Curiosity landed and has been exploring since 2012. The rover acquired this image using its Left Navigation Camera on sol 4456, or Martian day 4,456 of the Mars Science Laboratory mission, on Feb. 17, 2025, at 17:51:56 UTC. NASA/JPL-Caltech Earth planning date: Tuesday, Feb. 18, 2025
      During today’s unusual-for-MSL Tuesday planning day (because of the U.S. holiday on Monday), we planned activities under new winter heating constraints. Operating Curiosity on Mars requires attention to a number of factors — power, data volume, terrain roughness, temperature — that affect rover operability and safety. Winter means more heating to warm up the gears and mechanisms within the rover and the instruments, but energy that goes to heating means less energy for science observations. Nevertheless, we (and Curiosity) were up to the task of balancing heating and science, and planned enough observations to warm the science team’s hearts. 
      We fit in DRT, APXS, and MAHLI on two different bedrock targets, “Chumash Trail” and “Wheeler Gorge,” which have different fracturing and layering features. In the workspace, ChemCam targeted a clean vertical exposure of layered bedrock at “Sierra Madre” and a lumpy-looking patch of resistant nodules at “Chiquito Basin.” 
      The topography of the local terrain and our end-of-drive position after the weekend fortuitously lined up to give us a view of an exposure of the Marker Band, which we first explored on the other side of Gediz Vallis Ridge. Having a view of another exposure of this distinctive horizon helps give us further insight into its origin, so we included both RMI and Mastcam mosaics of the exposure. 
      Documenting a feature that, unlike the Marker Band, has been and will be in our sights for a long time — “Texoli” butte (pictured above) — was the goal of additional Mastcam and ChemCam imaging. Observations of potential sedimentary structures on the flank of Texoli motivated acquisition of an RMI mosaic, and a chance to capture structures along its southeast face inspired a Mastcam mosaic. Good exposures of additional nearby bedrock structures at “Mount Lukens” and “Chantry Flat” drew the eye of Mastcam, while another small mosaic focused on the kind of linear troughs in the sand we often see bordering bedrock slabs. Environmental observations included Navcam cloud and dust-devil movies, Mastcam observations of dust in the atmosphere, and REMS and RAD measurements spread across the three sols of the plan.
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Feb 20, 2025 Related Terms
      Blogs Explore More
      3 min read Cookies, Cream, and Crumbling Cores


      Article


      3 days ago
      2 min read Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science


      Article


      4 days ago
      2 min read Sols 4452-4453: Keeping Warm and Keeping Busy


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Explore This Section Science Science Activation Eclipses to Auroras: Eclipse… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
      In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation program’s Eclipse Ambassadors Off the Path project invited undergraduate students and amateur astronomers to join them as “NASA Partner Eclipse Ambassadors”. This opportunity to partner with NASA, provide solar viewing glasses, and share eclipse knowledge with underserved communities off the central paths involved:
      Partnering with an undergraduate/amateur astronomer Taking a 3-week cooperative course (~12 hours coursework) Engaging their communities with eclipse resources by reaching 200+ people These Eclipse Ambassador partnerships allowed participants to grow together as they learned new tools and techniques for explaining eclipses and engaging with the public, and Eclipse Ambassadors are recognized for their commitment to public engagement.
      In January 2025, the Eclipse Ambassadors Off the Path project held a week-long Heliophysics Winter Field School (WFS), a culminating Heliophysics Big Year experience for nine undergraduate and graduate Eclipse Ambassadors. The WFS exposed participants to career opportunities and field experience in heliophysics, citizen science, and space physics. The program included expert lectures on space physics, aurora, citizen science, and instrumentation, as well as hands-on learning opportunities with Poker Flat Rocket Range, the Museum of the North, aurora chases, and more. Students not only learned about heliophysics, they also actively participated in citizen science data collection using a variety of instruments, as well as the Aurorasaurus citizen science project app. Interactive panels on career paths helped prepare them to pursue relevant careers.
      One participant, Sophia, said, “This experience has only deepened my passion for heliophysics, science communication, and community engagement.” Another participant, Feras, reflected, “Nine brilliant students from across the country joined a week-long program at the University of Alaska Fairbanks’ (UAF) Geophysical Institute, where we attended multiple panels on solar and space physics, spoke to Athabaskan elders on their connection to the auroras, and visited the Poker Flat Research Range to observe the stunning northern lights.”
      This undertaking would not have been possible without the coordination, planning, leadership of many. Principal Investigators included Vivian White (Eclipse Ambassadors, Astronomical Society of the Pacific, ASP) and Dr. Elizabeth McDonald (Aurorasaurus, NASA GSFC). Other partners included Lynda McGilvary (Geophysical Institute at UAF), Jen Arseneau (UAF), Shanil Virani (ASP), Andréa Hughes (NASA), and Lindsay Glesener (University of Minnesota), as well as knowledge holders, students, and scientists.
      The Eclipse Ambassadors Off the Path project is supported by NASA under cooperative agreement award number 80NSS22M0007 and is part of NASA’s Science Activation Portfolio. To learn more, visit: www.eclipseambassadors.org.
      Winter Field School Participants standing under the aurora. Andy Witteman Share








      Details
      Last Updated Feb 18, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation 2023 Solar Eclipse 2024 Solar Eclipse Auroras Opportunities For Students to Get Involved Explore More
      2 min read An Afternoon of Family Science and Rocket Exploration in Alaska


      Article


      4 days ago
      3 min read Tribal Library Co-Design STEM Space Workshop


      Article


      5 days ago
      5 min read NASA Rockets to Fly Through Flickering, Vanishing Auroras


      Article


      4 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...