Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Astronomers using the NASA/ESA/CSA James Webb Space Telescope have captured compelling evidence of a planet with a mass similar to Saturn orbiting the young nearby star TWA 7.
      If confirmed, this would represent Webb’s first direct image discovery of a planet, and the lightest planet ever seen with this technique.
      View the full article
    • By European Space Agency
      Video: 02:08:03 ESA’s Living Planet Symposium, one of the world’s leading Earth observation conferences, opened today in Vienna. The plenary session began at 10:30 CEST and included addresses from ESA Director General Josef Aschbacher and ESA Director of Earth Observation Programmes Simonetta Cheli, as well as Margit Mischkulnig, from the Austrian Federal Ministry for Innovation.
      There were video addresses from President of Austria, Alexander van der Bellen, Federal Minister for Innovation, Mobility and Infrastructure Republic of Austria Peter Hanke and the EU Commissioner for Defence and Space Andrius Kubilius. Representatives of the United Nations Office for Outer Space Affairs, ECMWF, IPCC, Eumetsat, Nordic Bildung and ETH Zurich also spoke during the opening session.
      The first images from Biomass, ESA’s forest mission, launched earlier this year, were also presented during the opening plenary.
      More than 6500 participants from almost 120 countries signed up to attend the event. With more than 4200 scientific presentations and posters, the symposium provides a forum and meeting point for scientists, academics and space industry representatives, as well as students and citizens.
      The Living Planet Symposium takes place every three years and this year the focus is ‘from observation to climate action and sustainability for Earth’. Held in the Austrian capital over five days from today to 27 June, participants can take part in discussions on how we can work together in the fields of Earth science and with the Earth observation industry to ensure robust data and promote effective climate action to address the environmental crisis, with presentations also on new trends in Earth observation.
      Watch more videos from the Living Planet Symposium 2025.
      View the full article
    • By NASA
      For the first time, scientists can observe temperature changes in the Sun’s outer atmosphere thanks to new technology introduced by NASA’s CODEX instrument. This animated, color-coded heat map shows temperature changes over the course of a couple days, where red indicates hotter regions and purple indicates cooler ones. NASA/KASI/INAF/CODEX Key Points:
      NASA’s CODEX investigation captured images of the Sun’s outer atmosphere, the corona, showcasing new aspects of its gusty, uneven flow. The CODEX instrument, located on the International Space Station, is a coronagraph — a scientific tool that creates an artificial eclipse with physical disks — that measures the speed and temperature of solar wind using special filters. These first-of-their-kind measurements will help scientists improve models of space weather and better understand the Sun’s impact on Earth. Scientists analyzing data from NASA’s CODEX (Coronal Diagnostic Experiment) investigation have successfully evaluated the instrument’s first images, revealing the speed and temperature of material flowing out from the Sun. These images, shared at a press event Tuesday at the American Astronomical Society meeting in Anchorage, Alaska, illustrate the Sun’s outer atmosphere, or corona, is not a homogenous, steady flow of material, but an area with sputtering gusts of hot plasma. These images will help scientists improve their understanding of how the Sun impacts Earth and our technology in space.
      “We really never had the ability to do this kind of science before,” said Jeffrey Newmark, a heliophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the principal investigator for CODEX. “The right kind of filters, the right size instrumentation — all the right things fell into place. These are brand new observations that have never been seen before, and we think there’s a lot of really interesting science to be done with it.”
      The Sun continuously radiates material in the form of the solar wind. The Sun’s magnetic field shapes this material, sometimes creating flowing, ray-like formations called coronal streamers. In this view from NASA’s CODEX instrument, large dark spots block much of the bright light from the Sun. Blocking this light allows the instrument’s sensitive equipment to capture the faint light of the Sun’s outer atmosphere. NASA/KASI/INAF/CODEX NASA’s CODEX is a solar coronagraph, an instrument often employed to study the Sun’s faint corona, or outer atmosphere, by blocking the bright face of the Sun. The instrument, which is installed on the International Space Station, creates artificial eclipses using a series of circular pieces of material called occulting disks at the end of a long telescope-like tube. The occulting disks are about the size of a tennis ball and are held in place by three metal arms.
      Scientists often use coronagraphs to study visible light from the corona, revealing dynamic features, such as solar storms, that shape the weather in space, potentially impacting Earth and beyond.
      NASA missions use coronagraphs to study the Sun in various ways, but that doesn’t mean they all see the same thing. Coronagraphs on the joint NASA-ESA Solar and Heliospheric Observatory (SOHO) mission look at visible light from the solar corona with both a wide field of view and a smaller one. The CODEX instrument’s field of view is somewhere in the middle, but looks at blue light to understand temperature and speed variations in the background solar wind.
       
      In this composite image of overlapping solar observations, the center and left panels show the field-of-view coverage of the different coronagraphs with overlays and are labeled with observation ranges in solar radii. The third panel shows a zoomed-in, color-coded portion of the larger CODEX image. It highlights the temperature ratios in that portion of the solar corona using CODEX 405.0 and 393.5 nm filters. NASA/ESA/SOHO/KASI/INAF/CODEX “The CODEX instrument is doing something new,” said Newmark. “Previous coronagraph experiments have measured the density of material in the corona, but CODEX is measuring the temperature and speed of material in the slowly varying solar wind flowing out from the Sun.”
      These new measurements allow scientists to better characterize the energy at the source of the solar wind.
      The CODEX instrument uses four narrow-band filters — two for temperature and two for speed — to capture solar wind data. “By comparing the brightness of the images in each of these filters, we can tell the temperature and speed of the coronal solar wind,” said Newmark.
      Understanding the speed and temperature of the solar wind helps scientists build a more accurate picture of the Sun, which is necessary for modeling and predicting the Sun’s behaviors.
      “The CODEX instrument will impact space weather modeling by providing constraints for modelers to use in the future,” said Newmark. “We’re excited for what’s to come.”
      by NASA Science Editorial Team
      NASA’s Goddard Space Flight Center, Greenbelt, Md
      CODEX is a collaboration between NASA Goddard Space Flight Center and the Korea Astronomy and Space Science Institute (KASI) with additional contribution from Italy’s National Institute for Astrophysics (INAF).
      Share








      Details
      Last Updated Jun 10, 2025 Related Terms
      Heliophysics Coronagraph Coronal Diagnostic Experiment (CODEX) Goddard Space Flight Center Heliophysics Division Space Weather The Sun The Sun & Solar Physics View the full article
    • By USH
      Evidence points to the existence of a massive planet once located between Mars and Jupiter, known to some as Maldek. This ancient world is believed to have had a large moon, complete with oceans, an atmosphere, and possibly even life, orbiting it for millions of years. 

      Maldek is thought to have once been home to a highly advanced humanoid civilization before meeting a cataclysmic end, likely the result of either internal collapse, through nuclear war, technological abuse, or spiritual decline, or an external force, whether natural or engineered. Its destruction scattered debris across the solar system, forming what we now know as the asteroid belt. 
      As for its large moon, it was cast adrift and eventually settled into a new orbit around the Sun. Today, we know that moon as Mars. 
      This theory sheds light on several of Mars’ mysteries: the stark contrast between its two hemispheres, the presence of tidal bulges typically seen in moons, and the unusual nuclear isotopes in its soil, matching those produced by atomic explosions. 
      For decades, government scientists have suppressed this information. But the truth remains, etched into planetary scars, buried beneath ancient monuments, and encoded in the mathematical patterns of our solar system’s violent past. 
      Additional: According to some alternative theories, a remnant of Maldek’s civilization escaped the planet’s cataclysmic destruction, seeking refuge on Mars, a world that once pulsed with life and bore a striking resemblance to Earth. For a time, they thrived. But Mars, too, would not remain untouched. Whether through the slow unraveling of its atmosphere or the lingering shadows of interplanetary war, Mars fell into decline. And so, the survivors journeyed again, this time to Earth. Shrouded in mystery, their presence may have shaped early human consciousness, remembered through the ages as ancient gods or sky beings.
        View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Breathing Beyond Earth concept.NASA/Alvaro Romero-Calvo Alvaro Romero-Calvo
      Georgia Tech Research Corporation
      The reliable and efficient operation of spacecraft life support systems is challenged in microgravity by the near absence of buoyancy. This impacts the electrolytic production of oxygen and hydrogen from water by forcing the adoption of complex multiphase flow management technologies. Still, water splitting plays an essential role in human spaceflight, closing the regenerative environmental control and life support loop and connecting the water and atmosphere management subsystems. Existing oxygen generation systems, although successful for short-term crewed missions, lack the reliability and efficiency required for long-duration spaceflight and, in particular, for Mars exploration.
      During our Phase I NIAC effort, we demonstrated the basic feasibility of a novel water-splitting architecture that leverages contactless magnetohydrodynamic (MHD) forces to produce and separate oxygen and hydrogen gas bubbles in microgravity. The system, known as the Magnetohydrodynamic Oxygen Generation Assembly (MOGA), avoids the use of forced water recirculation loops or moving parts such as pumps or centrifuges for phase separation. This fundamental paradigm shift results in multiple operational advantages with respect to the state-of-the-art: increased robustness to over- and under-voltages in the cell stack, minimal risk of electrolyte leaching, wider operational temperature and humidity levels, simpler transient operation, increased material durability, enhanced system stability during dormant periods, modest water purity requirements, reduced microbial growth, and better component-level swap-ability, all of which result in an exceptionally robust system. Overall, these architectural features lead to a 32.9% mass reduction and 20.4% astronaut maintenance time savings with respect to the Oxygen Generation Assembly at the ISS for a four-crew Mars transfer, making the system ideally suited for long-duration missions. In Phase II, we seek to answer some of the key remaining unknowns surrounding this architecture, particularly regarding (i) the long-term electrochemical and multiphase flow behavior of the system in microgravity and its impact on power consumption and liquid interface stability, (ii) the transient operational modes of the MHD drive during start-up, shutdown, and dormancy, and (iii) architectural improvements for manufacturability and ease of repair. Toward that end, we will leverage our combined expertise in microgravity research by partnering with the ZARM Institute in Bremen and the German Aerospace Center to fly, free of charge to NASA, a large-scale magnetohydrodynamic drive system and demonstrate critical processes and components. An external review board composed of industry experts will assess the evolution of the project and inform commercial infusion. This effort will result in a TRL-4 system that will also benefit additional technologies of interest to NASA and the general public, such as water-based SmallSat propulsion and in-situ resource utilization.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated May 27, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
  • Check out these Videos

×
×
  • Create New...