Jump to content

Summary of the 2023 Ocean Surface Topography Science Team Meeting


Recommended Posts

  • Publishers
Posted
eo-meeting-summary-banner.png?w=1037

16 min read

Summary of the 2023 Ocean Surface Topography Science Team Meeting

Severine Fournier, NASA/Jet Propulsion Laboratory, severine.fournier@jpl.nasa.gov
Joshua Willis
, NASA/Jet Propulsion Laboratory, joshua.k.willis@jpl.nasa.gov

Introduction

The annual Ocean Surface Topography (OST) Science Team Meeting (STM) provides a forum for the international altimetry community to foster collaboration, address specific issues, and highlight scientific results and applications every year. The meeting location alternates between Europe and the U.S. The 2023 meeting was held in San Juan, Puerto Rico, from November 7–11, 2023. About 130 registrants from more than a dozen different countries attended the meeting.  

During this meeting the OST Science Team addressed specific technical issues related to the reference altimetry missions, which include the Ocean Topography Experiment (TOPEX)–Poseidon (1992–2006), Jason-1 (2001–2013), Ocean Surface Topography Mission (OSTM)/Jason-2 (2008–2019), Jason-3 (2016–present), and Sentinel-6 Michael Freilich (S6MF; 2020–present) missions. There was also discussion about the upcoming Sentinel-6B mission (scheduled for launch in 2025), which will be a successor to S6MF. The technical issues addressed included algorithm and model improvement, calibration/validation (cal/val) activities, merging TOPEX–Poseidon–Jason–S6MF data with those from other altimetric satellites, initial results from the Surface Water and Ocean Topography (SWOT) mission (2022–present), and preparation for future OST missions (e.g., Sentinel-6B).

The remainder of this article provides an overview of the meeting content, then presents an update on the status of current and planned OST missions, followed by a summary of the opening plenary and a couple of the most relevant science highlights from the splinter sessions. More details are available in the full report from the OST STM. The full OST STM program lists all of the presentations from the plenary, splinter, and poster sessions as well as links to many of the presentations and abstracts for the posters.

Meeting Overview

The meeting began with an opening plenary session, followed by an invited presentation, a series of splinter sessions, and a closing plenary session. The splinter session topics spanned a variety of algorithm improvements and measurement uncertainties, as well as sessions on coastal altimetry, the Chinese–French Oceanography Satellite (CFOSAT) mission (2019–present), and science topics ranging from climate and oceanography to hydrology and cryosphere science. A complete list of splinters is available online. Some of these are described in more detail in the sections that follow.

Status Report on Current OST Missions

This section reports on the status of several current and planned OST-related satellite missions. Each is described in its own subsection.

Sentinel-6 Michael Freilich

S6MF, launched on November 21, 2020, from Vandenberg Space Force Base, successfully completed its commissioning and subsequent entry into routine operations on schedule, one year later. S6MF succeeded Jason-3 as the Reference Mission (i.e., the mission that other altimetry missions are compared to) on April 7, 2022, at which point Jason-3 vacated the reference orbit. The first full mission reprocessing of products was released in July 2022, and another full reprocessing was completed in July 2023.

Jason-3

Jason-3, launched on January 17, 2016, continues its extended mission and is fully operational with all redundant systems available. It completed a longer than initially planned 15-month tandem phase with S6MF, which allowed for calibrations of both the primary and redundant instruments. On April 25, 2022, it began operations in an orbit that optimally interleaves ground tracks with S6MF. A second tandem phase with S6MF has been requested for early 2025. The second tandem phase aims to place an uncertainty bound on any long-term drift between the two missions.

Copernicus Copernicus Sentinel-3A and -3B

Sentinel-3A and -3B are identical satellites that were launched in February 16, 2016 and April 25, 2018, respectively. Similar to past missions in the reference orbit, a tandem phase with a separation of 30 seconds between the two satellites was performed to provide cross-calibration. Subsequently, Sentinel-3B was placed in a nominal orbit 140° out of phase with Sentinel-3A. Both missions now provide sea level measurements along high inclination tracks as part of their routine operations. A full mission reprocessing of land altimetry Level-2 (L2) products was completed in 2023.

Copernicus Sentinel-6B and 6C Missions and Beyond

Identical to S6MF, Sentinel-6B is planned as its successor. The spacecraft and instrument have been completed and is now in storage awaiting launch in 2025. Sentinel-6B will assure operational continuity through the end of 2030. An additional satellite, Sentinel-6C, is under consideration by NASA, the National Oceanic and Atmospheric Administration (NOAA), the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), the European Space Agency (ESA), and the Centre National d’Études Spatiale (CNES) [French Space Agency] to continue observations through 2035.

Surface Water Ocean Topography

SWOT launched on December 16, 2022. The primary instrument on SWOT, Ka-band radar interferometer (KaRIn), is the first space-borne, wide-swath altimetry instrument, capable of high-resolution measurements of the water height in the ocean and freshwater bodies. After commissioning and initial calibration, beta products became available to the science team in August 2023. The first images from SWOT were released, and the first results are showing great promise for the instrument capabilities (see NASA and CNES news).

Discussion of Future Missions Relevant to OST

The meeting continued with presentations on several existing and upcoming missions in various stages of development, each with applications relevant to OST. Each presentation included information on the mission’s status and development plans, as described below.

Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL)

Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) is one of six, high-priority candidate Copernicus Sentinel Expansion missions that are being studied to address the European Union’s needs, as well as to extend the current capabilities of the Copernicus space components. CRISTAL will carry a multifrequency radar altimeter and microwave radiometer to ensure continuity and improve the quality of sea ice thickness measurements compared to its predecessor, Cryosat-2, and provide the first space-based measurements of overlying snow depth.

Recommendations from the OST Science Team

After discussing these missions and other issues concerning altimetry, the OST STM adopted several recommendations to particular topics relating to these missions, which are named and described in the subsections that follow:

S6MF Extended Operations Phase Orbit.  

In light of that fact that user needs remain very high for altimetry observations complementary to the reference mission, the OST ST recommends extending operations of S6MF – assuming it remains in good health – beyond the time when Sentinel-6B has become the reference mission. Specifically, the OST ST recommends:

  • Moving S6MF to an exact repeat orbit with the same characteristics as the reference orbit – except for a phase difference of 163° along the orbit, either ahead or behind Sentinel-6B – resulting in an interleaved ground-track to the reference orbit. (For reference, Jason-3 currently flies 163° behind S6MF.)
  • Adopting the same data availability requirements as expressed in the End-User Requirements Document (EURD) (R-U- 00460/490/500/515/520/570/573/576) for the extended operations phase of S6MF, with the understanding that Sentinel-6B operations will be prioritized over S6MF.

Jason-3 Orbit Change.

The OST ST endorses the current plan to move Jason-3 to a Long Repeat Orbit (LRO) immediately after the conclusion of second tandem with S6MF. This 371-nodal-day LRO should be the same as the one occupied by Jason-2. The first two LRO cycles should be phased such that Jason-3 will interleave the two Jason-2 LRO cycles, each shifted by 2 km (1.2 mi). This will result in a systematic 2-km global grid combining Jason-2 and Jason-3 LRO data. The OST ST also recommends two additional LRO cycles that revisit the Jason-2 LRO ground tracks to fill in gaps and reduce mean sea surface errors. 

Climate Quality Accuracy in Future Mission 

To achieve accuracy in global and regional sea level change as detailed in the Global Climate Observing System (GCOS) requirements, the OST ST noted that it will be necessary to maintain and continue to improve the accuracy of orbital determination systems, such as those achieved using a combination of three tracking systems – Satellite Laser Ranging [SLR], Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), and Global Navigation Satellite System [GNSS]). The OST ST has demonstrated that these tracking systems are necessary to achieve maximum accuracy on the determination of regional sea level trends and strongly recommends that such accuracy be maintained in the design of Sentinel-6C. The OST ST also noted that accuracy of the Climate Data Record requires continued maintenance or improvement of the terrestrial reference frame, which also relies on these tracking systems. Finally, requirements on other aspects of the altimetric measurement system must also be maintained or continue to improve. 

Synergies with Argo and GRACE 

Argo (which is an international fleet of robotic instruments that drift with the ocean currents and measure the temperature and salinity of the ocean) plays a critical role in collecting data related to numerous cross-cutting, climate-related science topics important to altimetry measurements (missions discussed earlier in this article), to gravity measurements [e.g., the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow-On missions], and to broader science communities. The recent implementation of the Deep Argo mission has rapidly expanded observations of the ocean below 2000 m (~6500 ft). Data collected at these depths has helped to resolve questions about variations of temperature and salinity over the full depth of the ocean and to close regional and global sea level budgets. The OST ST recommends substantially increasing support for the OneArgo Program (which has been part of Argo’s design plan since 2020), including adding resources to expand the array to include global implementation of Deep Argo and increase coverage by Core Argo (the fleet of shallower floats) in polar regions and marginal seas. 

Altimetry Product Evolution 

OST ST recommends that agencies study the performance of the three latency products – Near Real-Time (NRT), Short Time-Critical (STC), and Non-Time Critical (NTC) – to ensure each continues to meet user needs or determine if their performance and latencies be redefined or adjusted. This should be considered across all platforms. 

Potential Gap between CryoSat-2 and CRISTAL 

The OST ST recommends studies to address which satellites, airborne operations, or other assets might help fulfill scientific needs for high-latitude ocean and ice elevation measurements during a potential gap between CryoSat-2 and CRISTAL. The OST ST also recommends minimizing the probability of a gap by extending CryoSat-2 operations through at least 2028 and avoiding delays in the launch of CRISTAL to the extent possible. 

Integrity of the Altimetry Constellation and Instrument Function 

 In light of ongoing efforts to launch a large number of communications satellites in orbits close to the 1336 km (830 mi) altimetry constellation, the OST ST recommends that agencies take steps to determine and establish sufficient margins that will safeguard altimetry missions in both reference and polar orbits from collision, debris, and interference with their passive and active instruments.

Opening Plenary Session Highlights

Severine Fournier [NASA/Jet Propulsion Laboratory (JPL)] began with welcoming remarks on behalf of all of the project scientists, who (in addition to herself) include Josh Willis [NASA/JPL], Pascal Bonnefond [CNES], Eric Leuliette [NOAA], Remko Scharroo [EUMETSAT], and Alejandro Egido [ESA]. In particular, Fournier reminded the participants of the addition of online forums, available until the next OST STM that can be accessed after logging into the site. In addition, Fournier announced that Egido will replace Craig Donlon as the ESA Project Scientist.

Program managers gave presentations on the status of altimetry and oceanographic programs at their respective institutions including: Nadya Vinogradova-Shiffer [NASA Headquarters], Annick Sylvestre-Baron [CNES], Estelle Obligis [EUMETSAT], Eric Leuliette, and Jérôme Bouffard [ESA].

In addition, Josh Willis presented Space Stories, a think tank for U.S.-based creatives and technologists to develop new storytelling approaches to sea level rise. This initiative is organized by Garage Stories and consists of masterclasses that were held in November 2023 with 15 participants across 5 teams. The winning team will have the opportunity to present their concept at JPL in 2024.

Finally, Fernando E. Pabón [Caribbean Center for Rising Seas—Director] spoke about climate issues that impact Puerto Rico. The island has about three million inhabitants and faces several climatic issues, including devastating impacts from hurricanes (with a hurricane season stretching over six months every year), sea level rise, and droughts. While Puerto Rico has a lot of outdated infrastructures, the territory has the most advanced regulatory environment in the Caribbeans. Pabón explained the economic, social, and geographical urgency of making good decisions to help the communities facing climatic challenges with a long-term vision. One of the goals of the Caribbean Center for Rising Seas is to work with practitioners and the public to change urban development practices, update building codes, zoning, and land-use regulations and spread the knowledge and understanding of sea level rise and flooding to the public.

Science Highlights

This section provides two scientifically compelling results that were shown during the splinter sessions. Complete coverage of the results shared during these sessions can be found at the website at the start of the article.

Synergies between Argo, GRACE, and Altimetry

Human activities are increasing the concentration of greenhouse gases, which have increased global temperature since the beginning of the twentieth century. Greenhouse gases trap energy within the Earth system. The ocean absorbs much of this excess energy in the form of heat (> 90%), acting as a huge heat reservoir. Global ocean heat content (GOHC) is therefore a key component in the Earth’s energy budget. Accurate knowledge of the GOHC change allows us to assess the Earth Energy Imbalance (EEI), which refers to the difference between the amount of energy the Earth receives from the Sun and the amount of energy it radiates back into space.

Various methodologies exist to estimate EEI from the GOHC. A 2022 article in Earth System Science Data describes the space geodetic approach, which relies on satellite altimetry and gravimetry measurements. Satellite altimetry is used to measure sea level rise, which is caused by both the expansion of warming ocean waters and the addition of freshwater to the ocean from melting land ice (Greenland and Antarctic ice sheets and mountain glaciers). Gravimetric measurements are used to measure ocean mass change, which can be used to estimate the contribution to sea level rise from freshwater ice melt on land. By combining gravimetry and altimetry, it is possible to estimate the thermal expansion of the entire ocean and scale it to estimate EEI – see Figure 1. The magnitude of EEI is small (0.5–1.0 W/m2) compared to the total amount of energy entering and leaving the climate system (~340 W/m2). Therefore, a high level of precision and accuracy are required to estimate the EEI mean (2) and its time variations at decadal scales (2). In this regard, the space geodetic approach emerges as a promising candidate capable of complementing other observing system elements aimed at measuring EEI.

OST Figure 1
Figure 1. This graph shows the decadal variations of the Earth Energy Imbalance (EEI) estimated from the space geodetic method that combines altimetry and gravimetric measurements (black) and direct measurements of solar radiation at the top of the atmosphere from the Clouds and the Earth’s Radiant Energy System (CERES) instrument (blue). The grey shaded area corresponds to the space geodetic method’s uncertainty.
Image credit: Michael Ablain/Collect Localisation Services (CLS), France

Large-scale Ocean Circulation Variability and Change

The year-to-year circulation changes along the coast of the western U.S. can have significant impact on the transport of nutrients that affect fisheries. A 2021 article published in the journal Limnology and Oceanography described a study that used ocean currents derived from satellite altimetry to understand the trajectory of water masses from the southern coast of California to the Pacific Northwest. The results show that after a year, subtropical/tropical water masses can reach the Oregon coast from the Southern California Bight (30 °N), and in multiple years from even further south (~26 °N–27 °N) and west. During warmer than average years associated with El Niño Southern Oscillation (1997–1998, 2002–2003, 2004–2005, 2005–2006, 2009–2010, 2014–2015, 2015–2016, 2016–2017), these subtropical/tropical waters masses reached further north compared to other years – see Figure 2. This shift is due to the increase poleward wind stress observed in the California Current. The research team also showed that these tropical warm waters tend to transport “warm water” zooplankton species with a lower fat content. The shift in zooplankton species can impact the young salmon population, which prefer fatty cold-water zooplankton, entering the ocean off the Oregon coast.

OST Figure 2
Figure 2. This graph shows the density of the water mass traveling northward from the tropics and sub-tropics toward the Pacific Northwest coast during [first three panels] the average of Warm Years (1997–1998, 2002–2003, 2004–2005, 2005–2006, 2009–2010, 2014–2015, 2015–2016, 2016–2017) for January, February, and March, and [last three panels] normal, or Other Years (remaining 15 years excluded from the ‘warm year episodes’ between 1997–2020) for January, February, and March. Off the coast of Oregon, warm water masses are denser during warm years.
Image credit: Ted Strub/Oregon State University

Closing Plenary Session Highlights

The closing plenary session included discussions, notably about the key points that were addressed during the opening session and splinter sessions.

Cristina Martin-Puig [EUMETSAT] gave a presentation on the definition of the new Geophysical Data Record (GDR) standards (GDR-G) in a multimission context. There are currently 11 altimeters operating with data quality that continues to undergo improvement. While agencies have been coordinating to homogenize processing baselines across missions, a full harmonization between missions was never discussed in detail until now. All agencies are now working in full collaboration to define a set of common standards and the best data processing practices to ensure full harmony between missions.

Conclusion

During the closing session, the OST ST adopted several recommendations – see “Recommendations from the OST Science Team” above for details.

The OST STM expressed strong support for the continuation of the joint Indo–French Satellite AltiKa (SARAL) drifting period for as long as possible, with its altimeter being the most important for future improvements in mean sea surface and gravity.

The OST STM ended with acknowledgements and kudos, several of which refer to recommendations made by the OST ST. The team expressed its appreciation to NASA and CNES for the successful launch and commissioning of the SWOT mission and its revolutionary new wide-swath altimeter for ocean and surface water. Additional acknowledgements can be found in the full OST STM report link referenced in the introduction of this article.

Overall, the meeting fulfilled all of its objectives. It provided a forum for updates on the status of Jason-3, S6MF, and other relevant missions and programs. It also offered detailed analyses of mission observations by the splinter groups. The team concluded that data from the Jason-3 and S6MF altimeters continue to meet the accuracy and availability requirements of the science community.

An international altimetry meeting to celebrate the 30-year anniversary of altimetry will be held in Montpellier, France on September 2–7, 2024.

separater line

Acknowledgment: This article is based on the official meeting report, referenced in the introduction of this article and prepared in cooperation with all of the OST STM chairs: Severine Fournier [JPL]; Josh Willis [JPL]; Pascal Bonnefond [Observatoire de Paris, Laboratoire Systèmes de Référence Temps-Espace (SYRTE)/CNES]; Eric Leuliette [NOAA]; Remko Scharroo [EUMETSAT]; and Alejandro Egido [ESA].

Share

Details

Last Updated
May 31, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA
      As part of the agency’s initiative to return humanity to the Moon and eventually send the first astronaut – an American – to Mars, NASA is surveying industry for interest and feedback on a fission surface power system, through a Request for Information issued Thursday.
      Earlier this month, NASA declared its intent to put a nuclear reactor on the Moon by the mid-2030s to support lunar exploration, provide power generation on Mars, and strengthen national security in space.
      “Today’s call for industry input is an important step toward engaging the commercial space industry in powering the lunar economy and enabling future human exploration on Mars,” said Steve Sinacore, Fission Surface Power program executive at NASA’s Glenn Research Center in Cleveland. “Developing a safe, reliable, and efficient power supply is key to unlocking the future of human space exploration and ensuring America retains its dominance in space.”
      Building on its previous work, NASA will work with industry to design a fission surface power system that would provide at least 100 kilowatts of electrical power, have a mass allocation of less than 15 metric tons, and use a closed Brayton cycle power conversion system, which converts heat to electricity.
      NASA’s new Fission Surface Power effort builds on more than 60 years of agency experience in exploration technology. In 2022, NASA awarded three contracts for fission surface power system concepts for the Moon. In addition, NASA has used nuclear power sources in spacecraft and rovers over the years.
      The size, weight, and power capability of fission systems make them an effective continuous power supply regardless of location. Additionally, a nuclear reactor could be placed in lunar regions where sunlight cannot reach and could sustain nights on the Moon which can last more than 14 Earth days near the poles.
      Nuclear power is a key element for NASA’s Artemis missions and supporting a robust lunar economy. The Request for Information invites innovators to contribute to this effort, allowing NASA to access industry expertise and bolstering American ingenuity.
      Responses to the Request for Information are due Thursday, Aug. 21, and could be used to finalize a potential opportunity later this year.
      The Fission Surface Power effort is managed through NASA Glenn. The power system development is funded by the agency’s Exploration Systems Development Mission Directorate Moon to Mars Program.
      Share
      Details
      Last Updated Aug 14, 2025 LocationNASA Headquarters Related Terms
      Glenn Research Center Exploration Systems Development Mission Directorate Fission Surface Power View the full article
    • By NASA
      Roscosmos cosmonaut Kirill Peskov, left, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi are seen inside the SpaceX Dragon spacecraft on the company’s recovery ship shortly after splashdown in the Pacific Ocean off the coast of San Diego, California, on Aug. 9, 2025.Credit: NASA/Keegan Barber After spending almost five months in space, NASA’s SpaceX Crew-10 astronauts will discuss their science mission aboard the International Space Station during a news conference at 4:15 p.m. EDT, Wednesday, Aug. 20, from the agency’s Johnson Space Center in Houston.
       
      NASA astronauts Anne McClain and Nichole Ayers, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will answer questions about their mission. The crew returned to Earth on Aug. 9.
       
      Live coverage of the news conference will stream on the agency’s YouTube channel. Learn how to watch NASA content through a variety of additional platforms, including social media.
       
      This event is open to media to attend in person or virtually. For in-person, media must contact the NASA Johnson newsroom no later than 12 p.m., Tuesday, Aug. 19, at: jsccommu@mail.nasa.gov or 281-483-5111. Media participating by phone must dial into the news conference no later than 10 minutes prior to the start of the event to ask questions. Questions also may be submitted on social media using #AskNASA. A copy of NASA’s media accreditation policy is available on the agency’s website.
       
      The crew spent 146 days aboard the orbiting laboratory, traveling nearly 62,795,205 million miles and completing 2,368 orbits around Earth. While living and working aboard the station, the crew completed hundreds of science experiments and technology demonstrations. The latest NASA space station news, images, and features are available on Instagram, Facebook, and X.

      NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low Earth orbit and the International Space Station to more people, more science, and more commercial opportunities. For almost 25 years, people have continuously lived and worked aboard the space station, advancing scientific knowledge and demonstrating new technologies that enable us to prepare for human exploration of the Moon as we prepare for Mars.

      Learn more about NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Aug 14, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      Science Launching on NASA's SpaceX 33rd Cargo Resupply Mission to the Space Station
    • By NASA
      NASA/Keegan Barber The members of NASA’s SpaceX Crew-10 mission – Roscosmos cosmonaut Kirill Peskov, left, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi – are all smiles after having landed in the Pacific Ocean off the coast of San Diego, Calif., Saturday, Aug. 9, 2025. The crew spent seven months aboard the International Space Station.
      Along the way, Crew-10 contributed hundreds of hours to scientific research, maintenance activities, and technology demonstrations. McClain, Ayers, and Onishi completed investigations on plant and microalgae growth, examined how space radiation affects DNA sequences in plants, observed how microgravity changes human eye structure and cells in the body, and more. The research conducted aboard the orbiting laboratory advances scientific knowledge and demonstrates new technologies that enable us to prepare for human exploration of the Moon and Mars.
      McClain and Ayers also completed a spacewalk on May 1. It was the third spacewalk for McClain and the first for Ayers.
      See more photos from Crew-10 Splashdown.
      Image credit: NASA/Keegan Barber
      View the full article
    • By NASA
      7 Min Read NASA’s SpaceX Crew-10 Looks Back at Science Mission
      NASA’s SpaceX Crew-10 Looks Back at Science Mission
      NASA’s SpaceX Crew-10 mission with agency astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov is preparing to return to Earth in early August after a long-duration mission aboard the International Space Station. During their stay, McClain, Ayers, and Onishi completed dozens of experiments and technology demonstrations, helping push the boundaries of scientific discovery aboard the orbiting laboratory.
      Here’s a look at some scientific milestones accomplished during the Crew-10 mission:
      Orbital effects on plants
      NASA The canisters floating in the cupola of the International Space Station contain wild-type and genetically-modified thale cress plants for the Rhodium Plant LIFE experiment. The investigation studies how radiation and gravity environments at different orbital altitudes affect plant growth by comparing Crew-10 data with plants flown aboard the Polaris Dawn mission, which flew deeper into space. Studies have shown microgravity affects growth rates, and a better understanding of the mechanisms behind this could improve plant growth techniques in space and on Earth.
      Solar spacewalk
      NASA NASA astronaut Anne McClain conducts a spacewalk to upgrade the International Space Station’s power generation systems, which include main solar arrays like the one visible behind her. McClain is installing hardware to support an IROSA (International Space Station Roll-Out Solar Array), a type of array that is more compact and produces more power than the station’s original ones. The IROSAs were first demonstrated aboard the orbiting laboratory in June 2017, and eight have been installed to augment the power available for scientific research and other activities.
      Microalgae on the menu
      NASA NASA astronaut Nichole Ayers uses the International Space Station’s Space Automated Bioproduct Laboratory to process samples for SOPHONSTER, a study of microgravity’s effects on the protein yield of microalgae. These organisms are highly nutritious, producing amino acids, fatty acids, B vitamins, iron, and fiber. The microalgae could provide sustainable meat and dairy alternatives during long-duration space missions. It also could be used to make biofuels and bioactive compounds in medicines in space and on Earth.
      Looking down on lightning
      NASA The International Space Station orbits more than 250 miles above Earth, giving astronauts a unique view of their home planet, where they can photograph familiar places and interesting phenomena. While passing over a stormy night, NASA astronaut Nichole Ayers captured this image of simultaneous lightning at the top of two thunderstorms. Scientists use instruments installed on the space station to study lightning and other weather conditions in Earth’s upper atmosphere. This research helps protect communication systems and aircraft while improving atmospheric models and weather predictions.
      Testing the tips of DNA
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA In this time-lapse video, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi and NASA astronaut Nichole Ayers harvest samples for the APEX-12 investigation, which examines how space radiation affects telomere activity in thale cress plants. Telomeres, which are repetitive DNA sequences that protect the ends of chromosomes, become shorter each time a cell divides and indicate cell aging. The APEX-12 investigation could clarify the role of telomeres in aging and diseases and help scientists equip plants and other organisms for the stress of long-duration spaceflight.
      Microscopic motion
      NASA A fluorescent microscope, known as ELVIS, captures the motion of microscopic algae and bacteria in 3D, a new capability aboard the International Space Station. The technology could be helpful in various applications in space and on Earth, such as monitoring water quality and detecting potentially infectious organisms. NASA astronaut Anne McClain prepares bacterial samples for viewing with the microscope.
      How cells sense gravity
      NASA Individual cells in our bodies can respond to the effects of gravity, but how they do this is largely unknown. The Cell Gravisensing investigation is an effort to observe the mechanism that enables cells to sense gravity and could lead to therapies to treat muscle and bone conditions, like muscle atrophy during long-duration spaceflight and osteoporosis on Earth. JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi processes research samples in the International Space Station’s Kibo laboratory module.
      Water works
      NASA NASA astronauts Nichole Ayers and Anne McClain work on installing hardware for the International Space Station’s Exploration Potable Water Dispenser. Scientists are evaluating the device’s water sanitization and microbial growth reduction technology. The dispenser provides room temperature and hot water for crew consumption and food preparation. This technology could be adopted for future exploration missions.
      Free-flying camera
      NASA Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) monitors the JEM Internal Ball Camera 2 as it floats through the International Space Station. The free-flying, rechargeable camera provides a visual field outside the other cameras installed aboard the space station. JAXA is testing the robot’s ability to capture video and imagery of scientific experiments and other activities, which could free up crew time for research and other duties.
      Two rings to pin them all
      NASA NASA astronaut Nichole Ayers sets up the space station’s Ring Sheared Drop device, which uses surface tension to pin a drop of liquid between two rings. The device makes it possible to study liquid proteins without a solid container, eliminating interactions between the solutions and container walls that can affect results. The Ring Sheared Drop-IBP-2 experiment studies the behavior of protein fluids in microgravity and tests predictive computer models. Better models could help advance manufacturing processes in space and on Earth for next-generation medicines to treat cancers and other diseases.
      Crystallization research
      NASA NASA astronaut Anne McClain swaps out hardware in the International Space Station’s Advanced Space Experiment Processor-4, which enables physical science and crystallization research. A current investigation uses the processor to demonstrate technology that may be able to produce medications during deep space missions and improve pharmaceutical manufacturing on Earth.
      Monitoring astronaut health
      NASA NASA astronaut Anne McClain helps JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi collect a sample of his blood. Analysis of blood samples is one tool NASA uses to continuously monitor crew health, including cardiovascular and immune system functions, bone and muscle mass changes, nutritional and metabolic status, and mental well-being. Crew members aboard the International Space Station also participate in various ongoing studies to better understand how different body systems adapt to weightlessness.
      Catching a corona
      NASA/KASI/INAF/CODEX This animated, color-coded heat map shows temperature changes in the Sun’s outer atmosphere, or corona, over several days, with red indicating hotter regions and purple showing cooler ones. Scientists can observe these changes thanks to the International Space Station’s CODEX, which collected data during the Crew-10 mission. The instrument uses a coronagraph to block out sunlight and reveal details in the Sun’s corona. Data from this investigation could help scientists understand the energy source of the solar wind, a flow of charged particles from the Sun that constantly bombards Earth.
      Expanding in-space crystallization
      NASA Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) services the International Space Station’s Advanced Space Experiment Processor-4 in preparation for ADSEP-Industrial Crystallization Cassette. This investigation tests new hardware that scales up research and could enable in-space production of pharmaceuticals and other materials for commercial space applications.
      Sowing seeds in space
      NASA NASA astronaut Nichole Ayers prepares mixture tubes containing samples for Nanoracks Module-9 Swiss Chard. This student-designed experiment examines whether the size, shape, color, and nutritional content of Swiss chard seeds germinated in space differ from those grown on Earth. The International Space Station hosts ongoing plant research as a source of food and other benefits, including contributing to astronaut well-being, for future long-duration missions.
      Protecting astronaut vision
      NASA Spaceflight can cause changes to eye structure and vision, so crew members monitor eye health throughout their missions. Astronaut Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), assisted by NASA astronaut Nichole Ayers, conducts an eye exam aboard the International Space Station using optical coherence tomography. This technology uses reflected light to produce 3D images of the retina, nerve fibers, and other eye structures and layers.
      Share
      Details
      Last Updated Aug 05, 2025 Related Terms
      ISS Research Humans in Space International Space Station (ISS) Explore More
      7 min read NICER Status Updates
      Article 4 hours ago 1 min read NASA Invites Virtual Guests to SpaceX Crew-11 Mission Launch
      Article 2 weeks ago 4 min read NASA Tests New Heat Source Fuel for Deep Space Exploration
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Research and Technology
      Humans In Space
      International Space Station
      View the full article
  • Check out these Videos

×
×
  • Create New...