Jump to content

Recommended Posts

  • Publishers
Posted
8 Min Read

The Moon and Amaey Shah

A comparison of two lunar surface images showing changes over time. The left image (M1104273380RE) displays a section of the Moon's surface with various craters and terrain features, while the right image (M1180555200RE) shows the same area at a different time, highlighting changes within the outlined hexagonal region. The images are presented side-by-side using NASA's MoonDiff tool, which allows for detailed examination of lunar surface changes. Each image has controls for adjusting gamma, inverting colors, and autostretching for better visibility of surface details.
Comparing two Lunar images using NASA’s MoonDiff project. Join this project, and help search for new features on the Moon!
Credits:
NASA/JPL-Caltech

Sometimes a story about a NASA volunteer just grabs your heart and won’t let go. NASA Scientist Dr. Brian Day shared with us the incredible story of what first ignited his passion for involving the public in his scientific research. It’s a story about a boy named Amaey Shah.

A young boy with short dark hair and glasses is participating in a science art activity. He is wearing glasses, a green t-shirt and an apron splattered with paint. The child is smiling slightly while holding a paintbrush and working on a colorful painting in front of them. The painting features abstract shapes with a prominent central figure surrounded by a circular design. Various art supplies, including cups of water, paintbrushes, and paper towels, are arranged on the table. Other children and adults can be seen in the background, engaged in similar activities.
Amaey Shah’s passion for science helped inspire NASA’s MoonDiff Project.
Credit: Purvi Shah

“Through the NASA Speakers Bureau, I was paired with a local teacher, Leslie Herleikson, and her after-school science program for K-12 students” Brian began.  “I’d talk to the students in the program periodically and take them on tours of the NASA Ames facilities.”  

“One of the kids in Leslie’s elementary program, a young boy named Amaey Shah, was recovering from treatment for childhood leukemia when I first met him. He was feeling fatigued from the treatment. As we did the tours of Ames he sometimes had to rest.  But he was a very precocious kid. He remained very excited about science, posing a rapid stream of very insightful questions, and always full of joyous enthusiasm for the new things that he would learn.  

Over time, Amaey rallied and his strength improved, fueled by his insatiable curiosity. I continued to meet with Amaey and his fellow students, with our discussions spanning the Solar System and beyond.

Then, one day, I showed up at the after-school program and Amaey was not there. Leslie took me aside after my presentation and let me know that Amaey had had a relapse which seemed pretty serious. He was going to need a bone marrow transplant. This news hit me especially hard. Shortly before the class meeting, I had been diagnosed with cancer myself.  Just as Amaey was going to be heading in for whole body radiation as part of his bone marrow transplant, I was going to be going in for radiation for my own cancer treatment.  

Leslie shared my situation with Amaey and his parents. She also asked if I would be willing to come talk with him about our upcoming shared experience.  The idea seemed strangely comforting and healthy. So I showed up at his house. Amaey and I sat down together, with his parents and older brother sitting off to the side in the same room.  

I said: Well, I understand we have something in common.

He said, Well, we both like science!

I said: That’s true.

He said: And we both wear glasses.

I said:  Yes.

Then, I said: And we’re both incredibly handsome!

We all had a good laugh. But then he looked at me and got serious. 

He said: And we both have cancer.

I said: Yes, and we’re both going to get radiation.

And he said: Yeah.

So I said: How do we feel about that?

He told me what was bothering him most. He said that in his case, the radiation was to kill all of his bone marrow, and hopefully the cancer that was within it.  Then he would get a transplant of new bone marrow.  But during the period of time in between losing his old bone marrow and when his new bone marrow kicked in, he would essentially be without an immune system. He would become a bubble boy—confined to a room for a very long period of time.  He expressed that he was really going to miss going out and exploring, going out and looking up at the night sky, because one of the things he really, really wanted to do was explore space.

I’d been given a warning about this from his parents, so I’d come prepared with my laptop. I pulled up MoonZoo.  MoonZoo was a citizen science application that asked people to look at pieces of lunar real estate and identify and count craters. Crater counts are the primary way of estimating the ages of various lunar terrains. If we want to understand the history and evolution of the lunar surface, getting these crater counts and the ages they represent is a really critical endeavor.

Amaey was quite excited to work on MoonZoo.  We played with that for a long while!  Then I pulled up GalaxyZoo, another Zooniverse project. 

We reviewed the fact that galaxies come in a great variety of sizes and shapes.  And we see a mind-bending number of galaxies out there. To understand their formation and evolution, we must first understand what kinds of galaxies they are. So, we need people to help classify these galaxies—which involves looking at a lot of galaxies.  Amaey really liked that too.

We went into our respective cancer treatments. Amaey did indeed become confined in isolation after his irradiation and transplant—but I heard from his teacher Leslie that from his room he was keeping himself busy exploring the Moon, counting craters with MoonZoo, and classifying galaxies with GalaxyZoo.  Even though Amaey was physically confined to his room, his intellect and curiosity were free to roam the Solar System and the Universe, exploring limitless expanses, thanks to the citizen science tools that he put to such good use. Soon, I got distracted with my own treatment, and I wasn’t online as much as I would have liked to have been.  

Two brothers are sharing a tender moment in a hospital setting. The older brother, wearing a black t-shirt with red and white graphics, is sitting up in a hospital bed and holding a book open. The younger brother, who has a bald head and is wearing a green shirt, is lying next to him with his head resting on the older brother's chest. The younger brother has a hospital wristband on his wrist. Both boys appear relaxed and content as they enjoy the book together. The background shows typical hospital furnishings, including the bed and some medical equipment.
Amaey with his brother Arjun.
Credit: Purvi Shah

As I was going through my own treatment, I didn’t get the news. Amaey’s treatment didn’t work. His parents and teachers opted not to tell me that he had passed away while I was in the midst of fighting my own battle.

The day after I successfully finished my final radiation treatment, I remember talking to Leslie on the phone. I told her that I was done, and I wanted to come talk to the kids again as soon as I was feeling a bit stronger. She said she had something to tell me. She let me know that Amaey had passed away.  I was devastated. 

Leslie also told me that Amaey’s funeral service was coming up soon. Amaey’s parents then contacted me, asking me if I might be feeling well enough to come speak at the service. I had to go. There was no way I could not be there!  

There were many people gathered together at the service and several speakers. At one point, Amaey’s grandfather got up and in a quiet, sorrowful way, explained how Amaey’s desire had always been to be a scientist. Amaey had wanted to study the stars, do research, and contribute. One of the great sadnesses of the grandfather’s own life was that Amaey never had the opportunity to become a scientist, to explore the Universe, and to contribute to the science like he had so loved.  

Then it was my turn to speak. I stood up, and I said that I mean no disrespect—I fully understood the sorrow that the family was feeling.  But the very important fact of the matter was that Amaey did not miss this opportunity! Amaey HAD realized his dream. He DID become a scientist. From his isolation room, Amaey DID explore. He DID do research. He DID make contributions. Amaey’s ambitions had been realized, and his discoveries had been added to the scientific record.

I said we can all take heart in knowing that under very difficult circumstances Amaey had achieved his dream.  That seemed to become a source of comfort to Amaey’s family. And that’s because he stepped up to the role and adventure of being a citizen scientist.”

Brian Day is the staff scientist at NASA’s Solar System Exploration Research Virtual Institute, headquartered at NASA’s Ames Research Center in California. His duties include serving as science lead for NASA’s Solar System Treks Project a family of open science online portals that make it easy to analyze the surfaces of the Moon and other planetary bodies in our Solar System. The project has a citizen science component called MoonDiff, which invites you to help search for changes and newly formed features on the Moon.

You can make your own contributions to science! Check out Brian’s project, MoonDiff. And if you know any other children like Amaey, please share it with them.

Share

Details

Last Updated
May 30, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      Live streaming the moon 16th August
    • By NASA
      National Institute of Aerospace NASA is calling on the next generation of collegiate innovators to imagine bold new concepts l pushing the boundaries of human exploration on the Moon, Mars, and beyond through the agency’s 2026 NASA Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition.  
      The RASC-AL challenge fuels innovation for aerospace systems concepts, analogs, and technology prototyping by bridging gaps through university engagement with NASA and industry. The competition is seeking U.S.-based undergraduate and graduate-level teams and their faculty advisors to develop new concepts to improve our ability to operate on the Moon and Mars. This year’s themes range from developing systems and technologies to support exploration of the lunar surface, to enhancing humanity’s ability to operate and return data from the surface of Mars.  
      “This competition is a unique opportunity for university students to play a role in the future of space innovation,” said Dan Mazanek, assistant branch head of NASA’s Exploration Space Mission Analysis Branch at NASA’s Langley Research Center in Hampton Virginia. “The RASC-AL challenge fuels creativity and empowers students to explore what’s possible. We’re excited for another year of RASC-AL and fresh ideas coming our way.”  
      Interested and eligible teams are invited to propose groundbreaking solutions and systems approaches that redefine how humans live and explore in deep space with relation to one of the following themes:  
      Communications, Positioning, Navigation, and Timing Architectures for Mars Surface Operations  Lunar Surface Power and Power Management and Distribution Architectures   Lunar Sample Return Concept  Lunar Technology Demonstrations Leveraging Common Infrastructure   Teams should express their intent to participate by submitting a non-binding notice of intent by Monday Oct. 13. Teams who submit a notice will be invited to a question-and-answer session with NASA subject matter experts on Monday Oct. 27.  
      The proposals, due Monday Feb. 23, 2026, are required to be seven-to-nine pages with an accompanying two-to-three-minute video. Proposals should demonstrate innovative solutions with original engineering and analysis in response to one of the four 2026 RASC-AL themes. Each team’s response should address novel and robust technologies, capabilities, and operational models that support expanding human’s ability to thrive beyond Earth. 
      Based on review of the team proposal and video submissions, in March, up to 14 teams will be selected to advance to the final phase of the competition – writing a technical paper, creating a technical poster, and presenting their concepts to a panel of NASA and industry experts in a competitive design review at the 2026 RASC-AL Forum in Cocoa Beach, Florida, beginning Monday June 1, 2026. 
      “The RASC-AL challenge enables students to think like NASA engineers—and in doing so, they often become the engineers who will carry NASA forward,” said Dr. Christopher Jones, RASC-AL program sponsor and Chief Technologist for the Systems Analysis and Concepts Directorate at NASA Langley. “The concepts they develop for this year’s competition will help inform our future strategies.”  
      Each finalist team will receive a $7,000 stipend to facilitate their full participation in the 2026 RASC-AL competition, and the top two overall winning teams will each be awarded an additional $7,000 cash prize as well as an invitation to attend and present their concept at an aerospace conference later in 2026. 
      The 2026 NASA RASC-AL competition is administered by the National Institute of Aerospace on behalf of NASA. The RASC-AL competition is sponsored by the agency’s Strategy and Architecture Office in the Exploration Systems Development Mission Directorate at NASA Headquarters, the Space Technology Mission Directorate (STMD), and the Systems Analysis and Concepts Directorate at NASA Langley. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing Program in STMD, manages the challenge. 
      For more information about the RASC-AL competition, including eligibility and submission guidelines, visit: https://rascal.nianet.org/. 
      View the full article
    • By Amazing Space
      Live streaming the moon 13th August
    • By Amazing Space
      Live streaming the moon 12th August
    • By NASA
      An artist’s concept of the Moon (right) and Mars (center) against the starry expanse of space. A sliver of the Earth’s horizon can be seen in the foreground.Credit: NASA NASA is accepting U.S. submissions for the second phase of the agency’s LunaRecycle Challenge, a Moon-focused recycling competition. The challenge aims to develop solutions for recycling common trash materials – like fabrics, plastics, foam, and metals – that could accumulate from activities such as system operations, industrial activities, and building habitats in deep space.
      Phase 2 of the LunaRecycle Challenge is divided into two levels: a milestone round and the final round. Submissions for the milestone round are open until January 2026, with finalists from that round announced in February. Up to 20 finalists from the milestone round will compete in the challenge’s in-person prototype demonstrations and final judging, slated for the following August. Cash prizes totaling $2 million are available for successful solutions in both rounds. 
      “NASA is eager to see how reimagining these materials can be helpful to potential future planetary surface missions,” said Jennifer Edmunson, acting program manager for Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “I’m confident focusing on the most critical trash items – and integration of the prototype and digital twin competition tracks – will yield remarkable solutions that could enable a sustainable human presence off-Earth and transform the future of space exploration.”
      Estimates indicate a crew of four astronauts could generate more than 2,100 kilograms (4,600 pounds) of single-use waste – including food packaging, plastic films, foam packaging, clothing, and more – within 365 days. Successful solutions in LunaRecycle’s Phase 2 should manage realistic trash volumes while minimizing resource inputs and crew time and operating safely with minimal hazards.
      Phase 2 is only open to U.S. individuals and teams. Participants can submit solutions regardless of whether they competed in the earlier Phase 1 competition.
      All Phase 2 participants are expected to build a physical prototype. In addition, participants can submit a digital twin of their prototype for additional awards in the milestone and final rounds.
      The LunaRecycle Challenge is a NASA Centennial Challenge, part of the Prizes, Challenges and Crowdsourcing Program within NASA’s Space Technology Mission Directorate. LunaRecycle Phase 1 received record-breaking interest from the global innovator community. The challenge received more than 1,200 registrations – more than any competition in the 20-year history of Centennial Challenges – and a panel of 50 judges evaluated nearly 200 submissions. Seventeen teams were selected as Phase 1 winners, representing five countries and nine U.S. states. Winners were announced via livestream on NASA Marshall’s YouTube channel.
      LunaRecycle is managed at NASA Marshall with subject matter experts primarily at the center, as well as NASA’s Kennedy Space Center in Florida and NASA’s Ames Research Center in California’s Silicon Valley. NASA, in partnership with The University of Alabama College of Engineering, manages the challenge with coordination from former Centennial Challenge winner AI SpaceFactory and environmental sustainability industry member Veolia.
      To learn more about LunaRecycle’s second phase, including registration for upcoming webinars, visit:
                                                                  https://www.nasa.gov/lunarecycle
      -end-
      Jasmine Hopkins
      NASA Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Aug 11, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters Ames Research Center Centennial Challenges Kennedy Space Center Marshall Space Flight Center Prizes, Challenges, and Crowdsourcing Program Space Technology Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...