Jump to content

Recommended Posts

Posted
low_STSCI-H-p0418a-k-1340x520.png

As Saturn grows closer through the eyes of the Cassini spacecraft, which is hurtling toward a rendezvous with the ringed world on June 30 (July 1, Universal Time), both Cassini and the Earth-orbiting Hubble Space Telescope snapped spectacular pictures of the planet and its magnificent rings. Cassini is approaching Saturn at an oblique angle to the Sun and from below the ecliptic plane. Cassini has a very diferent view of Saturn than Hubble's Earth-centered view. For the first time, astronomers can compare views of equal-sharpness of Saturn from two very different perspectives.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE - Earth From Space Views - Seen From The ISS
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A collage of artist concepts highlighting the novel approaches proposed by the 2025 NIAC awardees for possible future missions. Through the NASA Innovative Advanced Concepts (NIAC) program, NASA nurtures visionary yet credible concepts that could one day “change the possible” in aerospace, while engaging America’s innovators and entrepreneurs as partners in the journey.  
      These concepts span various disciplines and aim to advance capabilities such as finding resources on distant planets, making space travel safer and more efficient, and even providing benefits to life here on Earth. The NIAC portfolio of studies also includes several solutions and technologies that could help NASA achieve a future human presence on Mars. One concept at a time, NIAC is taking technology concepts from science fiction to reality.  
      Breathing beyond Earth 
      Astronauts have a limited supply of water and oxygen in space, which makes producing and maintaining these resources extremely valuable. One NIAC study investigates a system to separate oxygen and hydrogen gas bubbles in microgravity from water, without touching the water directly. Researchers found the concept can handle power changes, requires less clean water, works in a wide range of temperatures, and is more resistant to bacteria than existing oxygen generation systems for short-term crewed missions. These new developments could make it a great fit for a long trip to Mars.  
      Newly selected for another phase of study, the team wants to understand how the system will perform over long periods in space and consider ways to simplify the system’s build. They plan to test a large version of the system in microgravity in hopes of proving how it may be a game changer for future missions. 
      Detoxifying water on Mars
      Unlike water on Earth, Mars’ water is contaminated with toxic chemical compounds such as perchlorates and chlorates. These contaminants threaten human health even at tiny concentrations and can easily corrode hardware and equipment. Finding a way to remove contaminates from water will benefit future human explorers and prepare them to live on Mars long term. 
      Researchers are creating a regenerative perchlorate reduction system that uses perchlorate reduction pathways from naturally occurring bacteria. Perchlorate is a compound comprised of oxygen and chlorine that is typically used for rocket propellant. These perchlorate reduction pathways can be engineered into a type of bacterium that is known for its remarkable resilience, even in the harsh conditions of space. The system would use these enzymes to cause the biochemical reduction of chlorate and perchlorate to chloride and oxygen, eliminating these toxic molecules from the water. With the technology to detoxify water on Mars, humans could thrive on the Red Planet with an abundant water supply. 
      Tackling deep space radiation exposure 
      Mitochondria are the small structures within cells often called the “powerhouse,” but what if they could also power human health in space? Chronic radiation exposure is among the many threats to long-term human stays in space, including time spent traveling to and from Mars. One NIAC study explores transplanting new, undamaged mitochondria to radiation-damaged cells and investigates cell responses to relevant radiation levels to simulate deep-space travel. Researchers propose using in vitro human cell models – complex 3D structures grown in a lab to mimic aspects of organs – to demonstrate how targeted mitochondria replacement therapy could regenerate cellular function after acute and long-term radiation exposure.  
      While still in early stages, the research could help significantly reduce radiation risks for crewed missions to Mars and beyond. Here on Earth, the technology could also help treat a wide variety of age-related degenerative diseases associated with mitochondrial dysfunction. 
      Suiting up for Mars 
      Mars is no “walk in the park,” which is why specialized spacesuits are essential for future missions. Engineers propose using a digital template to generate custom, cost-effective, high-performance spacesuits. This spacesuit concept uses something called digital thread technology to protect crewmembers from the extreme Martian environment, while providing the mobility to perform daily Mars exploration endeavors, including scientific excursions. 
      This now completed NIAC study focused on mapping key spacesuit components and current manufacturing technologies to digital components, identifying technology gaps, benchmarking required capabilities, and developing a conceptional digital thread model for future spacesuit development and operational support. This research could help astronauts suit up for Mars and beyond in a way like never before.   
      Redefining what’s possible 
      From studying Mars to researching black holes and monitoring the atmosphere of Venus, NIAC concepts help us push the boundaries of exploration. By collaborating with innovators and entrepreneurs, NASA advances concepts for future and current missions while energizing the space economy.  
      If you have a visionary idea to share, you can apply to NIAC’s 2026 Phase I solicitation now until July 15.
      Facebook logo @NASATechnology @NASA_Technology Explore More
      4 min read NASA Tech to Use Moonlight to Enhance Measurements from Space
      Article 3 days ago 3 min read NASA’s Lunar Rescue System Challenge Supports Astronaut Safety
      Article 6 days ago 2 min read Tuning a NASA Instrument: Calibrating MASTER
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      Share
      Details
      Last Updated Jun 23, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
    • By NASA
      NASA, ESA and Jesús Maíz Apellániz (Instituto de Astrofísica de Andalucía, Spain); Acknowledgment: Davide De Martin (ESA/Hubble) Pismis 24, the star cluster seen here in an image released on Dec. 11, 2006, lies within the much larger emission nebula called NGC 6357, located about 8,000 light-years from Earth. The brightest object in the picture was once thought to be a single star with an incredibly large mass of 200 to 300 solar masses. That would have made it by far the most massive known star in the galaxy and would have put it considerably above the currently believed upper mass limit of about 150 solar masses for individual stars. Measurements from NASA’s Hubble Space Telescope, however, discovered that Pismis 24-1 is actually two separate stars, and, in doing so, “halved” their mass to around 100-150 solar masses each.
      Image credit: NASA, ESA and Jesús Maíz Apellániz (Instituto de Astrofísica de Andalucía, Spain); Acknowledgment: Davide De Martin (ESA/Hubble)
      View the full article
    • By NASA
      NASA’s James Webb Space Telescope recently imaged the Sombrero Galaxy with its NIRCam (Near-Infrared Camera), which shows dust from the galaxy’s outer ring blocking stellar light from stars within the galaxy. In the central region of the galaxy, the roughly 2,000 globular clusters, or collections of hundreds of thousands of old stars held together by gravity, glow in the near-infrared. The Sombrero Galaxy is around 30 million light-years from Earth in the constellation Virgo. From Earth, we see this galaxy nearly “edge-on,” or from the side.NASA, ESA, CSA, STScI After capturing an image of the iconic Sombrero galaxy at mid-infrared wavelengths in late 2024, NASA’s James Webb Space Telescope has now followed up with an observation in the near-infrared. In the newest image, released on June 3, 2025, the Sombrero galaxy’s tightly packed group of stars at the galaxy’s center is illuminated while the dust in the outer edges of the disk blocks some stellar light. Studying galaxies like the Sombrero at different wavelengths, including the near-infrared and mid-infrared with Webb, as well as the visible with NASA’s Hubble Space Telescope, helps astronomers understand how this complex system of stars, dust, and gas formed and evolved, along with the interplay of that material.
      Learn more about the Sombrero galaxy and what this new view can tell us.
      Image credit:  NASA, ESA, CSA, STScI
      View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope image features the remote galaxy HerS 020941.1+001557, which appears as a red arc that partially encircles a foreground elliptical galaxy.ESA/Hubble & NASA, H. Nayyeri, L. Marchetti, J. Lowenthal This NASA/ESA Hubble Space Telescope image offers us the chance to see a distant galaxy now some 19.5 billion light-years from Earth (but appearing as it did around 11 billion years ago, when the galaxy was 5.5 billion light-years away and began its trek to us through expanding space). Known as HerS 020941.1+001557, this remote galaxy appears as a red arc partially encircling a foreground elliptical galaxy located some 2.7 billion light-years away. Called SDSS J020941.27+001558.4, the elliptical galaxy appears as a bright dot at the center of the image with a broad haze of stars outward from its core. A third galaxy, called SDSS J020941.23+001600.7, seems to be intersecting part of the curving, red crescent of light created by the distant galaxy.
      The alignment of this trio of galaxies creates a type of gravitational lens called an Einstein ring. Gravitational lenses occur when light from a very distant object bends (or is ‘lensed’) around a massive (or ‘lensing’) object located between us and the distant lensed galaxy. When the lensed object and the lensing object align, they create an Einstein ring. Einstein rings can appear as a full or partial circle of light around the foreground lensing object, depending on how precise the alignment is. The effects of this phenomenon are much too subtle to see on a local level but can become clearly observable when dealing with curvatures of light on enormous, astronomical scales.
      Gravitational lenses not only bend and distort light from distant objects but magnify it as well. Here we see light from a distant galaxy following the curve of spacetime created by the elliptical galaxy’s mass. As the distant galaxy’s light passes through the gravitational lens, it is magnified and bent into a partial ring around the foreground galaxy, creating a distinctive Einstein ring shape.
      The partial Einstein ring in this image is not only beautiful, but noteworthy. A citizen scientist identified this Einstein ring as part of the SPACE WARPS project that asked citizen scientists to search for gravitational lenses in images.
      Text Credit: ESA/Hubble
      View the full article
  • Check out these Videos

×
×
  • Create New...