Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The Department of the Air Force is aligning with a new federal initiative to overhaul how government services are designed and delivered, a move leaders say will sharpen warfighting readiness, increase lethality and save taxpayer dollars.
      View the full article
    • By Space Force
      The United States Space Force announced when Guardians will have the opportunity to be sized for and order the new service dress uniform.

      View the full article
    • By NASA
      Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module on the International Space Station, setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. Joe Acaba Space missions rely on cryogenic fluids — extremely cold liquids like liquid hydrogen and oxygen — for both propulsion and life support systems. These fuels must be kept at ultra-low cryogenic temperatures to remain in liquid form; however, solar heating and other sources of heat increase the rate of evaporation of the liquid and cause the pressure in the storage tank to increase. Current storage methods require venting the cryogenic propellant to space to control the pressure in fuel tanks.
      NASA’s Zero Boil-Off Tank Noncondensables (ZBOT-NC) experiment is the continuation of Zero Boil-Off studies gathering crucial data to optimize fuel storage systems for space missions. The experiment will launch aboard Northrop Grumman’s 23rd resupply mission to the International Space Station.
      When Cold Fuel Gets Too Warm
      Even with multilayer insulation, heat unavoidably seeps into cryogenic fuel tanks from surrounding structures and the space environment, causing an increase in the liquid temperature and an associated increase in the evaporation rate. In turn, the pressure inside the tank increases. This process is called “boil-off” and the increase in tank pressure is referred to as “self-pressurization.”
      Venting excess gas to the environment or space when this process occurs is highly undesirable and becomes mission-critical on extended journeys. If crew members used current fuel storage methods for a years-long Mars expedition, all propellant might be lost to boil-off before the trip ends.
      NASA’s ZBOT experiments are investigating active pressure control methods to eliminate wasteful fuel venting. Specifically, active control through the use of jet mixing and other techniques are being evaluated and tested in the ZBOT series of experiments.
      The Pressure Control Problem
      ZBOT-NC further studies how noncondensable gases (NCGs) affect fuel tank behavior when present in spacecraft systems. NCGs don’t turn into liquid under the tank’s operating conditions and can affect tank pressure.
      The investigation, which is led out of Glenn Research Center, will operate inside the Microgravity Science Glovebox aboard the space station to gather data on how NCGs affect volatile liquid behavior in microgravity. It’s part of an effort to advance cryogenic fluid management technologies and help NASA better understand low-gravity fluid behavior.
      Researchers will measure pressure and temperature as they study how these gases change evaporation and condensation rates. Previous studies indicate the gases create barriers that could reduce a tank’s ability to maintain proper pressure control — a potentially serious issue for extended space missions.
      How this benefits space exploration
      The research directly supports Mars missions and other long-duration space travel by helping engineers design more efficient fuel storage systems and future space depots. The findings may also benefit scientific instruments on space telescopes and probes that rely on cryogenic fluids to maintain the extremely low temperatures needed for operation.
      How this benefits humanity
      The investigation could improve tank design models for medical, industrial, and energy production applications that depend on long-term cryogenic storage on Earth.
      Latest Content
      Stay up-to-date with the latest content from NASA as we explore the universe and discover more about our home planet.


      Zero Boil-Off Tank Noncondensables (ZBOT-NC)
      2 min read Principal Investigator(s): Overview: Zero Boil-Off Tank Noncondensables (ZBOT-NC) investigates how noncondensable gases interfere with fuel storage systems in microgravity. The…
      Topic
      What Are Quasicrystals, and Why Does NASA Study Them?
      3 min read For 40 years, finding new quasicrystals has been like searching for four-leaf clovers in a field. You’re lucky if you…
      Topic
      Growing Beyond Earth®
      2 min read Learn More Growing Beyond Earth student teams have helped select 5 of the 20 species that have been tested as…
      Topic
      1

      2

      3
      Next
      Biological & Physical Sciences Division

      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By Space Force
      The visit offered a deeper understanding of local space operations, and underscore the installation’s growing role in advancing national defense through innovation and enlisted force development.

      View the full article
    • By NASA
      3 Min Read NASA Seeks Industry Input on Next Phase of Commercial Space Stations
      The aurora australis appears over the Earth in this photograph taken from the International Space Station as it orbited 269 miles above the Indian Ocean southwest of Australia. Credits: NASA NASA is requesting feedback from American companies on the next phase of its commercial space stations strategy to ensure a seamless transition of activities in low Earth orbit from the International Space Station.
      The agency released a draft Phase 2 Announcement for Partnership Proposals (AFPP) Friday, asking for feedback from industry partners by 1 p.m. EDT Friday, Sept. 12. NASA will hold an informational industry briefing on Monday, Sept. 8, to provide a top-level summary of the documents and expectations.
      Under the direction of acting NASA Administrator Sean Duffy, the agency reassessed the commercial space stations acquisition strategy to ensure mission continuity, affordability, and national alignment, and to reduce the potential for a gap of a crew-capable platform in low Earth orbit.
      “NASA has led in low Earth orbit for 25 years and counting. Now, as we prepare for deorbiting the International Space Station in 2030, we’re calling on our commercial space partners to maintain this historic human presence,” Duffy said. “The American space industry is booming. Insight from these innovative companies will be invaluable as we work to chart the next phase of commercial space stations.”
      In Phase 2, NASA intends to support industry’s design and demonstration of commercial stations through multiple funded Space Act Agreements, selected through a full and open competition.
      “NASA is committed to continuing our partnership with industry to ensure a continuity in low Earth orbit,” said Angela Hart, manager, Commercial Low Earth Orbit Development Program at NASA’s Johnson Space Center in Houston. “The work done under our Phase 1 contracts and agreements have put us in a prime position to be successful for this next funded Space Act Agreement phase. By leveraging these agreements, we provide additional flexibility to our commercial partners to define the best path forward to provide NASA a safe and affordable crewed demonstration.”
      The Phase 2 agreements are expected to include funded milestones leading to critical design review readiness and an in-space crewed demonstration of four crew members for a minimum of 30 days. Agreements are expected to include up to a five-year period of performance.
      The agency’s phased approach will culminate in a follow-on Phase 3 using Federal Acquisition Regulation-based contract(s) to purchase station services through a full and open competition. This final phase will also provide formal design acceptance and certification, ensuring the commercial stations meet NASA’s safety requirements.
      NASA remains committed to fostering innovation and collaboration within the American space industry.
      The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost, enabling the agency to focus on the next step in humanity’s exploration of the solar system while also continuing to use low Earth orbit as an ideal environment for training and a proving ground for Artemis missions to the Moon and Mars.
      Learn more about commercial space stations at:
      https://www.nasa.gov/commercialspacestations
      Keep Exploring Discover More Topics From NASA
      Low Earth Orbit Economy
      Commercial Space Stations
      Commercial Space News
      Humans In Space
      View the full article
  • Check out these Videos

×
×
  • Create New...