Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Tess Caswell supports the International Space Station from NASA’s Johnson Space Center in Houston as a capsule communicator, or capcom, as well as through the Extravehicular Activity Office. She is currently on rotation as the Artemis lead capcom, helping to develop training and processes for the Artemis campaign by leveraging her experience supporting the space station.  
      She helps ensure that astronauts aboard the spacecraft receive the right information at the right time. This role involves a range of activities, from learning the language of the spacecraft and its onboard operations to participating in simulations to relay critical information to the crew, especially during dynamic operations or when things go wrong.  
      Read on to learn more about Tess! 
      Tess Caswell serves as lead capsule communicator, or capcom, in the Mission Control Center in Houston for the arrival of NASA’s SpaceX Crew-10 to the International Space Station. NASA/Robert Markowitz Where are you from? 
      Soldotna, Alaska. 
      How would you describe your job to family or friends that may not be familiar with NASA? 
      Capcoms are the people who speak to the astronauts on behalf of Mission Control, and I am the lead for the team of capcoms who will support missions to the Moon as part of NASA’s Artemis campaign.  
      What advice would you give to young individuals aspiring to work in the space industry or at NASA? 
      Remember that space travel is more than just engineers and scientists. It takes all kinds of people to support astronauts in space, including medicine, food science, communications, photography – you name it!
      Tess Caswell
      Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      I like to encourage young people to think about what part of space travel inspires them. We live in an era where there are many companies leveraging space for different purposes, including tourism, settlement, profit, and exploration. It’s important to think about what aspect of space travel interests you – or use things like internships to figure it out! 
      If you’re excited about space but don’t want to be an engineer, there are still jobs for you. 
      How long have you been working for NASA? 
      Eight years, plus a few internships. 
      What was your path to NASA? 
      Internships and student projects were my path to NASA. As an undergraduate, I worked in a student rocket lab, which gave me firsthand experience building and testing hardware. During the summers, I participated in internships to explore various careers and NASA centers. My final internship led directly to my first job after college as an Environmental and Thermal Operating Systems (ETHOS) flight controller in mission control for the space station. 
      I left NASA for a while to pursue an advanced degree in planetary geology and spent two years working at Blue Origin as the lead flight controller for the New Shepard capsule. Ultimately, though, I am motivated by exploration and chose to return to NASA where that is our focus. I landed in the Extravehicular Activity Office (EVA) within the Flight Operations Directorate after returning from Blue Origin. 
      Tess Caswell suits up in the Extravehicular Mobility Unit at the Neutral Buoyancy Laboratory at NASA’s Sonny Carter Training Facility in Houston during training to become an EVA instructor. NASA/Richie Hindman Is there a space figure you’ve looked up to or someone that inspires you?  
      It’s hard to name a specific figure who inspires me. Instead, it’s the caliber of people overall who work in flight operations at Johnson Space Center. Not just the astronauts, but the folks in mission control, in the backrooms supporting the control center, and on the training teams for astronauts and flight controllers. Every single person demonstrates excellence every day. It inspires me to bring my best self to the table in each and every project. 
      What is your favorite NASA memory or the most meaningful project you’ve worked on during your time with NASA? 
      That is a hard one!  
      My current favorite is probably the day I certified as a capcom for the space station. The first time talking to the crew is both nerve-wracking and exciting. You know the entire space station community stops and listens when you are speaking, but it’s incredibly cool to be privileged with speaking to the crew. So, your first few days are a little scary, but awesome. After I’d been declared certified, the crew called down on Space –to Ground to congratulate me. It was a very special moment. I saved a recording of it! 
      Tess Caswell learns to fly the International Space Station Remote Manipulator System, or Canadarm2, in Canada as part of capcom training. Tess Caswell What do you love sharing about station? 
      The international collaboration required to design, build, and operate the International Space Station is a constant source of inspiration for me.
      Tess Caswell
      Extravehicular Activity Flight Controller and Lead Capsule Communicator 
      When I give folks tours of mission control, I like to point out the photo of the U.S.-built Unity node and the Russian-built Zarya module mated in the shuttle cargo bay. The idea that those two modules were designed and built in different countries, launched in two different vehicles, and connected for the first time in low Earth orbit reminds me of what we can all do when we work together across geopolitical boundaries. The space station brings people together in a common mission that benefits all of us. 
      If you could have dinner with any astronaut, past or present, who would it be? 
      Sally Ride, definitely. 
      Do you have a favorite space-related memory or moment that stands out to you? 
      If I had to choose one, I’d say it was the day a person from NASA visited my elementary school in 1995. I remember being completely captivated by his presentation and dying to ask questions when he came by my classroom later. It’s a favorite memory because it poured fuel on the spark of my early childhood interest in space exploration. It wasn’t the thing that initially piqued my interest, but that visit made the dream feel attainable and set me on the course that has me at NASA today. 
      What are some of the key projects you have worked on during your time at NASA? What have been your favorite? 
      I’ve worked in mission control for the space station as an ETHOS flight controller and, later, as a capcom. I’ve also certified as an EVA task backroom controller and scripted three spacewalks that were performed on the space station. While working in EVA, I also helped design the products and processes that will be used to design moonwalks for Artemis astronauts and how flight control operations will work during dynamic, science-driven spacewalks.  
       Developing an EVA is a huge integration effort, and you get to work with a broad range of perspectives to build a solid plan. Then, the spacewalks themselves were both challenging and rewarding. They didn’t go exactly to plan, but we kept the crew safe and accomplished our primary objectives! 
      I’m fortunate to have had so many cool experiences while working at NASA, and I know there will be many more. 
      Tess Caswell, right, and geoscientist Dr. Kelsey Young, left, conduct night operations in NASA’s Johnson Space Center rock yard, testing EVA techniques to prepare for future lunar missions.NASA/Norah Moran What are your hobbies/things you enjoy doing outside of work? 
      I like to stay active, including trail running, taekwondo, backpacking, and cross-country skiing (which is a bit hard to train for in Houston). I spend as much time as I can flying my Piper J-3 Cub, trying to make myself a better pilot each time I fly. Finally, I read and write fiction to let my imagination wander. 
      Day launch or night launch? 
      Night launch! 
      Favorite space movie? 
      Apollo 13, hands down! 
      NASA Worm or Meatball logo? 
      Worm – elegant and cool! 
      Every day, we are conducting exciting research aboard our orbiting laboratory that will help us explore farther into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It is a curated hub of space station research digital media from Johnson and other centers and space agencies.  
      Sign up for our weekly email newsletter to get the updates delivered directly to you.  
      Follow updates on social media at @ISS_Research on X, and on the space station accounts on Facebook and Instagram.  
      Explore More
      3 min read Countdown to Space Station’s Silver Jubilee with Silver Research
      Article 3 days ago 9 min read Station Nation: Meet Megan Harvey, Utilization Flight Lead and Capsule Communicator 
      Article 3 months ago 3 min read Meet Alex Olley: Air Force Veteran Powering the Space Station 
      Article 4 months ago View the full article
    • By NASA
      After months of work in the NASA Spacesuit User Interface Technologies for Students (SUITS) challenge, more than 100 students from 12 universities across the United States traveled to NASA’s Johnson Space Center in Houston to showcase potential user interface designs for future generations of spacesuits and rovers.  
      NASA Johnson’s simulated Moon and Mars surface, called “the rock yard,” became the students’ testing ground as they braved the humid nights and abundance of mosquitoes to put their innovative designs to the test. Geraldo Cisneros, the tech team lead, said, “This year’s SUITS challenge was a complete success. It provided a unique opportunity for NASA to evaluate the software designs and tools developed by the student teams, and to explore how similar innovations could contribute to future, human-centered Artemis missions. My favorite part of the challenge was watching how the students responded to obstacles and setbacks. Their resilience and determination were truly inspiring.”
      Tess Caswell and the Rice Owls team from Rice University test their augmented reality heads-up display at Johnson Space Center’s Rock Yard in Houston on May 19, 2025.NASA/James Blair Students filled their jam-packed days not only with testing, but also with guest speakers and tours. Swastik Patel from Purdue University said, “All of the teams really enjoyed being here, seeing NASA facilities, and developing their knowledge with NASA coordinators and teams from across the nation. Despite the challenges, the camaraderie between all the participants and staff was very helpful in terms of getting through the intensity. Can’t wait to be back next year!”
      John Mulnix with Team Cosmoshox from Wichita State University presents the team’s design during the Spacesuit User Interface Technologies for Students (SUITS) exit pitches at Johnson on May 22, 2025.NASA/David DeHoyos “This week has been an incredible opportunity. Just seeing the energy and everything that’s going on here was incredible. This week has really made me reevaluate a lot of things that I shoved aside. I’m grateful to NASA for having this opportunity, and hopefully we can continue to have these opportunities.”  
      At the end of test week, each student team presented their projects to a panel of experts. These presentations served as a platform for students to showcase not only their technical achievements but also their problem-solving approaches, teamwork, and vision for real-world application. The panel–composed of NASA astronaut Deniz Burnham, Flight Director Garrett Hehn, and industry leaders–posed thought-provoking questions and offered constructive feedback that challenged the students to think critically and further refine their ideas. Their insights highlighted potential areas for growth, new directions for exploration, and ways to enhance the impact of their projects. The students left the session energized and inspired, brimming with new ideas and a renewed enthusiasm for future development and innovation. Burnham remarked, “The students did such a great job. They’re all so creative and wonderful, definitely something that can be implemented in the future.” 
      Gamaliel Cherry, director of the Office of STEM Engagement at Johnson, presents the Artemis Educator Award to Maggie Schoonover from Wichita State University on May 22, 2025.NASA/David DeHoyos NASA SUITS test week was not only about pushing boundaries; it was about earning a piece of history. Three Artemis Student Challenge Awards were presented. The Innovation and Pay it Forward awards were chosen by the NASA team, recognizing the most groundbreaking and impactful designs. Students submitted nominations for the Artemis Educator Award, celebrating the faculty member who had a profound influence on their journeys. The Innovation Award went to Team JARVIS from Purdue University and Indiana State University, for going above and beyond in their ingenuity, creativity, and inventiveness. Team Selene from Midwestern State University earned the Pay it Forward Award for conducting meaningful education events in the community and beyond. The Artemis Educator Award was given to Maggie Schoonover from Wichita State University in Kansas for the time, commitment, and dedication she gave to her team.
      “The NASA SUITS challenge completes its eighth year in operation due to the generous support of NASA’s EVA and Human Surface Mobility Program,” said NASA Activity Manager Jamie Semple. “This challenge fosters an environment where students learn essential skills to immediately enter a science, technology, engineering, and mathematics (STEM) career, and directly contribute to NASA mission operations. These students are creating proposals, generating designs, working in teams similar to the NASA workforce, utilizing artificial intelligence, and designing mission operation solutions that could be part of the Artemis III mission and beyond. NASA’s student design challenges are an important component of STEM employment development and there is no better way to learn technical skills to ensure future career success.”
      The week serves as a springboard for the next generation of space exploration, igniting curiosity, ambition, and technical excellence among young innovators. By engaging with real-world challenges and technologies, participants not only deepen their understanding of space science but also actively contribute to shaping its future. Each challenge tackled, each solution proposed, and each connection formed represents a meaningful step forward; not just for the individuals involved, but for humanity as a whole. With every iteration of the program, the dream of venturing further into space becomes more tangible, transforming what once seemed like science fiction into achievable milestones.
      Are you interested in joining the next NASA SUITS challenge? Find more information here.
      The next challenge will open for proposals at the end of August 2025.
      The 2025 NASA SUITS teams represent academic institutions across the United States.NASA/David DeHoyosView the full article
    • By Amazing Space
      Latest Solar Activity Update: 24 Hours of Sunspots, Flares & Auroras (July 16, 2025)
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      New research suggests vast surface features on Venus called coronae continue to be shaped by tectonic processes. Observations of these features from NASA’s Magellan mission include, clockwise from top left, Artemis Corona, Quetzalpetlatl Corona, Bahet Corona, and Aine Corona.NASA/JPL-Caltech Using archival data from the mission, launched in 1989, researchers have uncovered new evidence that tectonic activity may be deforming the planet’s surface.
      Vast, quasi-circular features on Venus’ surface may reveal that the planet has ongoing tectonics, according to new research based on data gathered more than 30 years ago by NASA’s Magellan mission. On Earth, the planet’s surface is continually renewed by the constant shifting and recycling of massive sections of crust, called tectonic plates, that float atop a viscous interior. Venus doesn’t have tectonic plates, but its surface is still being deformed by molten material from below.
      Seeking to better understand the underlying processes driving these deformations, the researchers studied a type of feature called a corona. Ranging in size from dozens to hundreds of miles across, a corona is most often thought to be the location where a plume of hot, buoyant material from the planet’s mantle rises, pushing against the lithosphere above. (The lithosphere includes the planet’s crust and the uppermost part of its mantle.) These structures are usually oval, with a concentric fracture system surrounding them. Hundreds of coronae are known to exist on Venus.
      Published in the journal Science Advances, the new study details newly discovered signs of activity at or beneath the surface shaping many of Venus’ coronae, features that may also provide a unique window into Earth’s past. The researchers found the evidence of this tectonic activity within data from NASA’s Magellan mission, which orbited Venus in the 1990s and gathered the most detailed gravity and topography data on the planet currently available.
      “Coronae are not found on Earth today; however, they may have existed when our planet was young and before plate tectonics had been established,” said the study’s lead author, Gael Cascioli, assistant research scientist at the University of Maryland, Baltimore County, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “By combining gravity and topography data, this research has provided a new and important insight into the possible subsurface processes currently shaping the surface of Venus.”
      This artist’s concept of the large Quetzalpetlatl Corona located in Venus’ southern hemisphere depicts active volcanism and a subduction zone, where the foreground crust plunges into the planet’s interior. A new study suggests coronae are the locations of several types of tectonic activity.NASA/JPL-Caltech/Peter Rubin As members of NASA’s forthcoming VERITAS (Venus Emissivity, Radio science, InSAR, Topography, and Spectroscopy) mission, Cascioli and his team are particularly interested in the high-resolution gravity data the spacecraft will provide. Study coauthor Erwan Mazarico, also at Goddard, will co-lead the VERITAS gravity experiment when the mission launches no earlier than 2031.
      Mystery Coronae
      Managed by NASA’s Jet Propulsion Laboratory in Southern California, Magellan used its radar system to see through Venus’ thick atmosphere and map the topography of its mountains and plains. Of the geological features the spacecraft mapped, coronae were perhaps the most enigmatic: It wasn’t clear how they formed. In the years since, scientists have found many coronae in locations where the planet’s lithosphere is thin and heat flow is high.
      “Coronae are abundant on Venus. They are very large features, and people have proposed different theories over the years as to how they formed,” said coauthor Anna Gülcher, Earth and planetary scientist at the University of Bern in Switzerland. “The most exciting thing for our study is that we can now say there are most likely various and ongoing active processes driving their formation. We believe these same processes may have occurred early in Earth’s history.”
      The researchers developed sophisticated 3D geodynamic models that demonstrate various formation scenarios for plume-induced coronae and compared them with the combined gravity and topography data from Magellan. The gravity data proved crucial in helping the researchers detect less dense, hot, and buoyant plumes under the surface — information that couldn’t be discerned from topography data alone. Of the 75 coronae studied, 52 appear to have buoyant mantle material beneath them that is likely driving tectonic processes.
      One key process is subduction: On Earth, it happens when the edge of one tectonic plate is driven beneath the adjacent plate. Friction between the plates can generate earthquakes, and as the old rocky material dives into the hot mantle, the rock melts and is recycled back to the surface via volcanic vents.
      These illustrations depict various types of tectonic activity thought to persist beneath Venus’ coronae. Lithospheric dripping and subduction are shown at top; below are and two scenarios where hot plume material rises and pushes against the lithosphere, potentially driving volcanism above it.Anna Gülcher, CC BY-NC On Venus, a different kind of subduction is thought to occur around the perimeter of some coronae. In this scenario, as a buoyant plume of hot rock in the mantle pushes upward into the lithosphere, surface material rises and spreads outward, colliding with surrounding surface material and pushing that material downward into the mantle.
      Another tectonic process known as lithospheric dripping could also be present, where dense accumulations of comparatively cool material sink from the lithosphere into the hot mantle. The researchers also identify several places where a third process may be taking place: A plume of molten rock beneath a thicker part of the lithosphere potentially drives volcanism above it.
      Deciphering Venus
      This work marks the latest instance of scientists returning to Magellan data to find that Venus exhibits geologic processes that are more Earth-like than originally thought. Recently, researchers were able to spot erupting volcanoes, including vast lava flows that vented from Maat Mons, Sif Mons, and Eistla Regio in radar images from the orbiter.
      While those images provided direct evidence of volcanic action, the authors of the new study will need sharper resolution to draw a complete picture about the tectonic processes driving corona formation. “The VERITAS gravity maps of Venus will boost the resolution by at least a factor of two to four, depending on location — a level of detail that could revolutionize our understanding of Venus’ geology and implications for early Earth,” said study coauthor Suzanne Smrekar, a planetary scientist at JPL and principal investigator for VERITAS.
      Managed by JPL, VERITAS will use a synthetic aperture radar to create 3D global maps and a near-infrared spectrometer to figure out what the surface of Venus is made of.  Using its radio tracking system, the spacecraft will also measure the planet’s gravitational field to determine the structure of Venus’ interior. All of these instruments will help pinpoint areas of activity on the surface.
      For more information about NASA’s VERITAS mission, visit:
      https://science.nasa.gov/mission/veritas/
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-068
      Share
      Details
      Last Updated May 14, 2025 Related Terms
      Magellan Jet Propulsion Laboratory Planetary Science Venus VERITAS (Venus Emissivity, Radio Science, InSAR, Topography & Spectroscopy) Explore More
      6 min read NASA Studies Reveal Hidden Secrets About Interiors of Moon, Vesta
      Article 3 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
      Article 2 days ago 3 min read NASA Study Reveals Venus Crust Surprise
      New details about the crust on Venus include some surprises about the geology of Earth’s…
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      Solar Activity Update (March 16, 2025) | Sunspots, Solar Flares & Aurora Forecast 🌞
  • Check out these Videos

×
×
  • Create New...