Jump to content

Jennifer Scott Williams: Leading the Next Giant Leap in Space Exploration and Championing STEM Advocacy


Recommended Posts

  • Publishers
Posted

Jennifer Scott Williams embodies leadership, innovation, and excitement for life. Her career has been a testament to her unwavering passion and versatility, navigating through various roles and significantly contributing to the agency’s milestones and evolution. In her 23 years at NASA, she has combined engineering, business, science communications, and leadership all into one.    

Currently in the Center Director’s Office, Williams serves as NASA Johnson Space Center Director Vanessa Wyche’s assistant for technical integration, supporting meetings such as readiness reviews for the International Space Station and Commercial Crew Programs. Her role also involves coordinating skip-level meetings for Dare | Unite | Explore and overseeing senior staff meetings to ensure that leadership remains informed about the activities happening across the center.  

A woman wearing a grey blazer and a pink shirt smiles in front of a blue background with two flags behind her, a U.S. flag on the left and a NASA flag on the right.
Official portrait of Jennifer Scott Williams.
Credit: NASA/Josh Valcarcel 

She also plays a role in the International Space Station Program’s Research Integration Office, ensuring crews aboard the space station have the tools they need to complete their research. 

“Like many of our laboratories where astronauts conduct their research, understanding the engineering components of the facilities we use on board is crucial,” said Williams. “Understanding the science is also critical,” she added. “It adds meaning to our work when we help execute the science onboard and communicate the creative insights and results from the experiments conducted. Being a good communicator is extremely important and creativity makes that message real and mean something to the public.” 

A woman poses for a selfie in front of a crowd of people who are also posing and smiling for the picture. They are inside in a museum.
Jennifer Scott Williams (front) during a senior staff outreach event at the Remembering Columbia Museum in Hemphill, Texas.

Her journey also included groundbreaking work on the Boeing Starliner spacecraft, where she served as the instrumentation and communications officer on the Boeing Mission Operations Team. Her efforts established operational foundations that will shape its future space missions. Williams was instrumental in developing the vehicle communications systems, understanding its operations, creating simulations, coding, and comprehending the computer systems, addressing all the fundamental aspects necessary for the spacecraft. 

Beyond her technical contributions, Williams is deeply committed to inspiring the next generation of explorers. She also managed the Minority University Research and Education Project, encouraging students of color to engage in STEM fields.  

She led a team that collaborated with students, teachers, and educational institutions through the Pre-Service Teacher Program. Williams said that working in the Office of STEM Engagement was a new experience that became life-changing for her. “I really rediscovered a passion that I have for students and education,” she said. “I love being able to help interns navigate the NASA environment and help people of color be able to apply for NASA jobs. It takes all perspectives to accomplish our mission.” 

Williams earned dual bachelor’s degrees in mathematics and electrical engineering from Spelman College and the Georgia Institute of Technology. She later received a master’s degree in electrical engineering from the University of Houston. She belongs to the Spelman College National Alumni Association and holds a lifetime membership in the National Society of Black Engineers. 

A woman wears a blue top, black button down, and orange necklace in front of a blue sky background with a sketch of the International Space Station.
Jennifer Scott Williams’ headshot in the 2024 International Space Station calendar.
Credit: NASA/Bill Stafford  

Williams is an advocate for youth interested in pursuing STEM careers. Her advice is, “Come on and do it. We are out here,” she added “I love that we are embracing our differences instead of shunning differences because having people with different backgrounds, personalities, insights, and perspectives is what’s going to help us get back to the Moon.”     

“For the Artemis Generation, we need creative minds,” she said. “We need artists, scientists, engineers, technologists, physicians, attorneys, and financial connoisseurs. This next generation is going to have to be open-minded thought seekers. They need to be willing to do things that we have never done before and take the risks so that we can put boots on the Moon and Mars.” 

Four people, two children and two adults, smile and pose outside in front of a large building.
Jennifer Scott Williams with her family at Kennedy Space Center in Florida for the launch of NASA’s SpaceX Commercial Resupply Service mission to the International Space Station on March 15, 2023.

Williams also plays an integral role in Dare | Unite | Explore initiatives. She works with senior leadership to make sure the workforce has professional mobility and is able to get the training and resources for new opportunities. “We want to encourage employees to try new things, to learn, and to grow in different organizations,” she said. “Dare | Unite | Explore ensures that the Johnson workforce is fully supported in our efforts as we grow and develop and that our facilities and processes can support us and are in alignment with our future initiatives.”   

“I never really thought I would work at NASA, but when I came here to interview, they put me in the shuttle simulator and I was hooked,” she said. “I encourage my children to pursue careers in STEM because it has been so beneficial to me throughout my life. The people that I have come across in my time here have been phenomenal. It makes me want to keep coming to work.”  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Students from Eau Gallie High School in Melbourne, Florida, visited the Prototype Development Laboratory at NASA’s Kennedy Space Center in Florida on Monday, April 28, 2025. The science, technology, engineering, and mathematics (STEM) participants are interested in technical trades and had the chance to hear from technicians at the Prototype Development Laboratory who design, fabricate, and evaluate protypes, test articles, and test support equipment.
      NASA Kennedy’s Office of STEM Engagement provides opportunities to attract, engage, and enable students seeking careers in science, technology, engineering, and mathematics.
      “My technical training in high school plays a huge role in the work I do every day in the Prototype Laboratory,” said Spencer Wells, mechanical engineering technician at Prototype Development Laboratory. “If it weren’t for that training, I’m convinced I wouldn’t be here at NASA.”
      Some of the participants also have worked on a project to design and build a wheel for a lunar excavator demonstration mission as part of the NASA HUNCH program, an instructional partnership between NASA and educational institutions.
      Image credit: NASA/Frank Michaux
      View the full article
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman emphasized the critical role of partnerships and the growing strategic importance of space during his remarks at the 2nd International AeroSpace Power Conference in Rome.

      View the full article
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman and Italian Air Force Chief of Staff Lt. Gen. Luca Goretti signed a statement of understanding.

      View the full article
    • By NASA
      A first-generation college graduate, Nilufar Ramji was blazing trails long before arriving at NASA. With her multifaceted expertise, she is helping shape the messaging behind humanity’s return to the Moon, Mars, and beyond. 
      Ramji is currently on detail as the co-executive producer for NASA’s live broadcasts, ensuring the agency’s missions and discoveries are clearly and effectively communicated to the public. Through her work, she expands understanding of what space exploration means for all—and why it matters. 
      Official portrait of Nilufar Ramji. NASA/Josh Valcarcel Before stepping into her acting role, Ramji served as the lead public affairs officer for Moon to Mars activities at NASA’s Johnson Space Center in Houston. She spearheaded communication strategies for the Commercial Lunar Payload Services initiative, which works with private companies to deliver science and technology payloads to the lunar surface. She has also provided live commentary for International Space Station operations to learn and prepare for Artemis missions.  
      Ramji played a pivotal role in communicating NASA’s involvement in two major lunar missions in 2025 including Firefly Aerospace’s Blue Ghost Mission 1 which successfully delivered 10 NASA payloads to the Moon’s Mare Crisium on March 2. Ramji served as the live mission commentator, helping audiences around the world follow the historic moment—from lunar orbit insertion to touchdown. She also led communications for Intuitive Machines’ IM-2 mission, which landed near the Moon’s South Pole on March 6, marking the southernmost lunar landing ever achieved. 
      Nilufar Ramji, left, and Brigette Oakes, vice president of engineering at Firefly Aerospace, in the company’s mission operations center in Cedar Park, Texas, during the Blue Ghost Mission 1 lunar landing. NASA/Helen Arase Vargas Early in her NASA career, she led agencywide STEM communications, shaping how NASA connects with students and educators. As a lead strategist, she developed messaging that made science and technology more accessible to younger audiences—helping inspire the Artemis Generation. 
      “Being one of the storytellers behind humanity’s return to the Moon is something I take pride in,” she said. “People don’t realize what exploring our solar system has done for us here on Earth. Going to the Moon and onto Mars will bring that message home.” 
      Nilufar Ramji, left, and Aliyah Craddock, digital media lead for NASA Science in the Science Mission Directorate, in the Astromaterials Research and Exploration Science laboratory at NASA’s Johnson Space Center in Houston. NASA Ramji communicates not just the science of space, but its greater significance. “How can we be thoughtful in our communications?” is a question that drives her approach. Whether guiding a live broadcast or developing messaging about lunar science, she is constantly evaluating, executing, and refining NASA’s voice. 
      She also understands the importance of commercial partnerships in expanding human presence in space. “It’s exciting to see how many different people and organizations come together to make this a reality,” she said. “By creating a larger space economy, we’re able to do things faster and cheaper and still accomplish the same goals to make sure we’re all successful.” 
      Nilufar Ramji presents a TedX Talk, “Storytelling from Space” in Sugar Land, Texas. In Aug. 2023, Ramji delivered a TEDx Talk, “Storytelling from Space” in Sugar Land, Texas, where she emphasized the power of narrative to inspire and unite humanity in the quest to explore the universe. Drawing from her NASA experience, she illustrated how communication bridges the gap between complex science and public engagement. 
      She credits her mentors and colleagues for supporting her growth. “I have great mentors and people I can lean on if I need help,” she said. “It’s something I didn’t realize I had until I came to NASA.” 
      Ramji believes stepping outside your comfort zone is essential. “Discomfort brings new learning, understanding, and opportunities, so I like being uncomfortable at times,” she said. “I’m open and receptive to feedback. Constructive criticism has helped me grow and evolve—and better understand NASA’s mission.” 
      For her, balance means creating intentional space for reflection, growth, and meaningful connection. 
      Nilufar Ramji gives remarks during Johnson’s building naming ceremony of the “Dorothy Vaughan Center in Honor of the Women of Apollo” on July 19, 2024. NASA/Robert Markowitz  Before joining NASA, Ramji had already built an international career rooted in service. She worked at the Aga Khan Foundation in Canada, a nonprofit organization focused on addressing challenges in underdeveloped communities through education and healthcare. 
      She led visitor programs, workshops and more than 250 events—often for diplomats and global leaders—to promote “quiet diplomacy” and dialogue. 
      “Transparency, quality, fairness and diversity of perspective are all important to me,” she said. “People come from different experiences that broaden our understanding.” 
      Ramji later moved to East Africa as the foundation’s sole communications representative across Kenya, Tanzania, and Uganda. There, she trained more than 300 staff and built a communications strategy to help local teams share stories of impact—both successes and challenges—with honesty and empathy. 
      Her work left a lasting mark on the communities she served and underscored the power of communication to drive positive change. 
      Nilufar Ramji captures the story of a sesame farmer in Mtwara, Tanzania, whose livelihood improved through a rural development program initiated by the Aga Khan Foundation. In 2013, Ramji moved to the United States and started over, rebuilding her network and career. She worked for the Aga Khan Council for USA in Houston, leading a volunteer recruitment program that connected thousands of people with roles suited to their skills. 
      She later applied for a contractor position—not knowing it was with NASA. “I never thought my skills or expertise would be valued at a place like NASA,” she said. But in 2018, she accepted a role as a public relations specialist supporting International Space Station outreach. She has been shaping the agency’s storytelling ever since.  
      Ramji’s journey represents NASA’s commitment to pushing boundaries and expanding humanity’s knowledge of the universe. With collaboration, transparency, and vision, she is helping bring the next frontier of space exploration to life. 
      Explore More
      4 min read Robots, Rovers, and Regolith: NASA Brings Exploration to FIRST Robotics 2025 
      Article 7 days ago 4 min read NASA Advances Precision Landing Technology with Field Test at Kennedy
      Article 7 days ago 3 min read In the Starlight: Jason Phillips’ Unexpected Path to Johnson Procurement
      Article 1 week ago View the full article
    • By NASA
      6 min read
      NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
      This North Atlantic right whale, named “Bowtie,” was spotted feeding in southern Maine waters in January 2025. A new technique aims to use NASA satellite data to see the plankton these whales depend on from space. Credit: New England Aquarium, taken under NMFS permit # 25739 In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape. The North Atlantic right whale filters clouds of tiny reddish zooplankton — called Calanus finmarchicus — from the sea. These zooplankton, no bigger than grains of rice, are the whale’s lifeline. Only about 370 of these massive creatures remain.
      For decades, tracking the tiny plankton meant sending research vessels out in the ocean, towing nets and counting samples by hand. Now, scientists are looking from above instead.
      Using NASA satellite data, researchers found a way to detect Calanus swarms at the ocean surface in the Gulf of Maine, picking up on the animals’ natural red pigment. This early-stage approach, described in a new study, may help researchers better estimate where the copepods gather, and where whales might follow.
      Tracking the zooplankton from space could aid both the whales and maritime industries. By predicting where these mammals are likely to feed, researchers and marine resource managers hope to reduce deadly vessel strikes and fishing gear entanglements — two major threats to the species. Knowing the feeding patterns could also help shipping and fishing industries operate more efficiently.
      Calanus finmarchicus, a tiny zooplankton powering North Atlantic food webs, fuels right whale populations with its energy-rich lipid reserves. Credit: Cameron Thompson “NASA invests in this kind of research because it connects space-based observation with real-world challenges,” said Cynthia Hall, a support scientist at NASA headquarters in Washington. She works with the Early Career Research Program, which partly funded the work. “It’s yet another a way to put NASA satellite data to work for science, communities, and ecosystems.”
      Revealing the Ocean’s Hidden Patterns
      The new approach uses data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite. The MODIS instrument doesn’t directly see the copepods themselves. Instead, it reads how the spectrum of sunlight reflected from the ocean surface changes in response to what’s in the water.
      When large numbers of the zooplankton rise to the surface, their reddish pigment — astaxanthin, the same compound that gives salmon its pink color — subtly alters how photons, or particles of light, from the sun are absorbed or scattered in the water. The fate of these photons in the ocean depends on the mix of living and non-living matter in seawater, creating a slight shift in color that MODIS can detect.
      “We didn’t know to look for Calanus before in this way,” said Catherine Mitchell, a satellite oceanographer at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine. “Remote sensing has typically focused on smaller things like phytoplankton. But recent research suggested that larger, millimeter-sized organisms like zooplankton can also influence ocean color.”
      A few years ago, researchers piloted a satellite method for detecting copepods in Norwegian waters. Now, some of those same scientists — along with Mitchell’s team — have refined the approach and applied it to the Gulf of Maine, a crucial feeding ground for right whales during their northern migration. By combining satellite data, a model, and field measurements, they produced enhanced images that revealed Calanus swarms at the sea surface, and were able to estimate numbers of the tiny animals.
      “We know the right whales are using habitats we don’t fully understand,” said Rebekah Shunmugapandi, also a satellite oceanographer at Bigelow and the study’s lead author. “This satellite-based Calanus information could eventually help identify unknown feeding grounds or better anticipate where whales might travel.”
      Tracking Elusive Giants
      Despite decades of study, North Atlantic right whales remain remarkably enigmatic to scientists. Once fairly predictable in their movements along the Eastern Seaboard of North America, these massive mammals began abandoning some traditional feeding grounds in 2010-2011. Their sudden shift to unexpected areas like the Gulf of Saint Lawrence caught people off guard, with deadly consequences.
      “We’ve had whales getting hit by ships and whales getting stuck in fishing gear,” said Laura Ganley, a research scientist in the Anderson Cabot Center for Ocean Life at the New England Aquarium in Boston, which conducts aerial and boat surveys of the whales.  
      In 2017, the National Oceanic and Atmospheric Administration designated the situation as an “unusual mortality event” in an effort to address the whales’ decline. Since then, 80 North Atlantic right whales have been killed or sustained serious injuries, according to NOAA.
      NASA satellite imagery from June 2009 was used to test a new method for detecting the copepod Calanus finmarchicus in the Gulf of Maine and estimating their numbers from space. Credit: NASA Earth Observatory image by Wanmei Liang, using data from Shunmugapandi, R., et al. (2025) In the Gulf of Maine, there’s less shipping activity, but there can be a complex patchwork of lobster fishing gear, said Sarah Leiter, a scientist with the Maine Department of Marine Resources. “Each fisherman has 800 traps or so,” Leiter explained. “If a larger number of whales shows up suddenly, like they just did in January 2025, it is challenging. Fishermen need time and good weather to adjust that gear.”
      What excites Leiter the most about the satellite data is the potential to use it in a forecasting tool to help predict where the whales could go. “That would be incredibly useful in giving us that crucial lead time,” she said.
      PACE: The Next Generation of Ocean Observer
      For now, the Calanus-tracking method has limitations. Because MODIS detects the copepods’ red pigment, not the animals themselves, that means other small, reddish organisms can be mistaken for the zooplankton. And cloud cover, rough seas, or deeper swarms all limit what satellites can spot.
      MODIS is also nearing the end of its operational life. But NASA’s next-generation PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) satellite — launched in 2024 — is poised to make dramatic improvements in the detection of zooplankton and phytoplankton.
      NASA’s Ocean Color Instrument on the PACE satellite captured these swirling green phytoplankton blooms in the Gulf of Maine in April 2024. Such blooms fuel zooplankton like Calanus finmarchicus. Credit: NASA “The PACE satellite will definitely be able to do this, and maybe even something better,” said Bridget Seegers, an oceanographer and mission scientist with the PACE team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The PACE mission includes the Ocean Color Instrument, which detects more than 280 wavelengths of light. That’s a big jump from the 10 wavelengths seen by MODIS. More wavelengths mean finer detail and better insights into ocean color and the type of plankton that the satellite can spot.
      Local knowledge of seasonal plankton patterns will still be essential to interpret the data correctly. But the goal isn’t perfect detection, the scientists say, but rather to provide another tool to inform decision-making, especially when time or resources are limited.
      By Emily DeMarco
      NASA Headquarters
      Share








      Details
      Last Updated May 05, 2025 Editor Emily DeMarco Related Terms
      Earth Moderate Resolution Imaging Spectroradiometer (MODIS) Oceans PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      3 min read NASA Tracks Snowmelt to Improve Water Management
      As part of a science mission tracking one of Earth’s most precious resources – water…


      Article


      2 weeks ago
      5 min read NASA Airborne Sensor’s Wildfire Data Helps Firefighters Take Action
      Data from the AVIRIS-3 sensor was recently used to create detailed fire maps in minutes,…


      Article


      2 weeks ago
      3 min read Celebrating Earth as Only NASA Can
      Lee esta historia en español aquí. From the iconic image of Earthrise taken by Apollo 8…


      Article


      2 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...