Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Rounds Out Picture of Sombrero Galaxy’s Disk
      NASA’s James Webb Space Telescope’s new image of the famous Sombrero galaxy in near-infrared wavelengths shows dust from the outer ring blocking stellar light from the inner portions of the galaxy. Credits:
      NASA, ESA, CSA, STScI After capturing an image of the iconic Sombrero galaxy at mid-infrared wavelengths in late 2024, NASA’s James Webb Space Telescope has now followed up with an observation in the near-infrared. In the newest image, the Sombrero galaxy’s huge bulge, the tightly packed group of stars at the galaxy’s center, is illuminated, while the dust in the outer edges of the disk blocks some stellar light.
      Image A: Sombrero Galaxy (NIRCam)
      NASA’s James Webb Space Telescope’s new image of the famous Sombrero galaxy in near-infrared wavelengths shows dust from the outer ring blocking stellar light from the inner portions of the galaxy. NASA, ESA, CSA, STScI Studying galaxies like the Sombrero at different wavelengths, including the near-infrared and mid-infrared with Webb, as well as the visible with NASA’s Hubble Space Telescope, helps astronomers understand how this complex system of stars, dust, and gas formed and evolved, along with the interplay of that material.
      When compared to Hubble’s visible light image, the dust disk doesn’t look as pronounced in the new near-infrared image from Webb’s NIRCam (Near-Infrared Camera) instrument. That’s because the longer, redder wavelengths of infrared light emitted by stars slip past dust more easily, so less of that stellar light is blocked. In the mid-infrared image, we actually see that dust glow.
      Image B: Sombrero Galaxy (NIRCam/MIRI)
      The Sombrero galaxy is split diagonally in this image: near-infrared observations from NASA’s James Webb Space Telescope are at the left, and mid-infrared observations from Webb are at the right. NASA, ESA, CSA, STScI The Sombrero galaxy is located about 30 million light-years away from Earth at the edge of the Virgo galaxy cluster, and has a mass equal to about 800 billion Suns. This galaxy sits “edge on” to us, meaning we see it from its side.
      Studies have indicated that hiding behind the galaxy’s smooth dust lane and calming glow is a turbulent past. A few oddities discovered over the years have hinted this galaxy was once part of a violent merger with at least one other galaxy.
      The Sombrero is home to roughly 2,000 globular clusters, or collections of hundreds of thousands of old stars held together by gravity. Spectroscopic studies have shown the stars within these globular clusters are unexpectedly different from one another.
      Stars that form around the same time from the same material should have similar chemical ‘fingerprints’ – for example, the same amounts of elements like oxygen or neon. However, this galaxy’s globular clusters show noticeable variation. A merger of different galaxies over billions of years would explain this difference.
      Another piece of evidence supporting this merger theory is the warped appearance of the galaxy’s inner disk.
      While our view is classified as “edge on,” we’re actually seeing this nearly edge on. Our view six degrees off the galaxy’s equator means we don’t see it directly from the side, but a little bit from above. From this view, the inner disk appears tilted inward, like the beginning of a funnel, instead of flat.
      Video A: Sombrero Galaxy Fade (Visible, Near-Infrared, Mid-Infrared)
      This video compares images of the Sombrero galaxy, also known as Messier 104 (M104). The first image shows visible light observed by the Hubble Space Telescope’s Advanced Camera for Surveys. The second is in near-infrared light and shows NASA’s Webb Space Telescope’s look at the galaxy using NIRCam (Near-Infrared Instrument). The final image shows mid-infrared light observed by Webb’s MIRI (Mid-Infrared Instrument).
      Credit: NASA, ESA, CSA, STScI The powerful resolution of Webb’s NIRCam also allows us to resolve individual stars outside of, but not necessarily at the same distance as, the galaxy, some of which appear red. These are called red giants, which are cooler stars, but their large surface area causes them to glow brightly in this image. These red giants also are detected in the mid-infrared, while the smaller, bluer stars in the near-infrared “disappear” in the longer wavelengths.
      Also in the NIRCam image, galaxies of diverse shapes and colors are scattered throughout the backdrop of space. The variety of their colors provides astronomers with clues about their characteristics, such as their distance from Earth.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Article: Types of Galaxies
      Video: Different types of galaxies
      Article: Sombrero Galaxy’s Halo Suggests Turbulent Past
      More Images: Images of the Sombrero Galaxy in different types of light
      Video: Sonification of Sombrero Galaxy images
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Galaxies Stories



      Universe


      Share








      Details
      Last Updated Jun 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Galaxies Goddard Space Flight Center Science & Research Spiral Galaxies The Universe View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The SWOT satellite is helping scientists size up flood waves on waterways like the Yellowstone River, pictured here in October 2024 in Montana. SWOT measures the height of surface waters, including the ocean, and hundreds of thousands of rivers, lakes, and reservoirs in the U.S. alone.NPS In a first, researchers from NASA and Virginia Tech used satellite data to measure the height and speed of potentially hazardous flood waves traveling down U.S. rivers. The three waves they tracked were likely caused by extreme rainfall and by a loosened ice jam. While there is currently no database that compiles satellite data on river flood waves, the new study highlights the potential of space-based observations to aid hydrologists and engineers, especially those working in communities along river networks with limited flood control structures such as levees and flood gates.
      Unlike ocean waves, which are ordinarily driven by wind and tides, and roll to shore at a steady clip, river waves (also called flood or flow waves) are temporary surges stretching tens to hundreds of miles. Typically caused by rainfall or seasonal snowmelt, they are essential to shuttling nutrients and organisms down a river. But they can also pose hazards: Extreme river waves triggered by a prolonged downpour or dam break can produce floods.
      “Ocean waves are well known from surfing and sailing, but rivers are the arteries of the planet. We want to understand their dynamics,” said Cedric David, a hydrologist at NASA’s Jet Propulsion Laboratory in Southern California and a coauthor of a new study published May 14 in Geophysical Research Letters.
      SWOT is depicted in orbit in this artist’s concept, with sunlight glinting off one of its solar panels and both antennas of its key instrument — the Ka-band Radar Interferometer (KaRIn) — extended. The antennas collect data along a swath 30 miles (50 kilometers) wide on either side of the satellite.CNES Measuring Speed and Size
      To search for river waves for her doctoral research, lead author Hana Thurman of Virginia Tech turned to a spacecraft launched in 2022. The SWOT (Surface Water and Ocean Topography) satellite is a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales). It is surveying the height of nearly all of Earth’s surface waters, both fresh and salty, using its sensitive Ka-band Radar Interferometer (KaRIn). The instrument maps the elevation and width of water bodies by bouncing microwaves off the surface and timing how long the signal takes to return.
      “In addition to monitoring total storage of waters in lakes and rivers, we zoom in on dynamics and impacts of water movement and change,” said Nadya Vinogradova Shiffer, SWOT program scientist at NASA Headquarters in Washington.
      Thurman knew that SWOT has helped scientists track rising sea levels near the coast, spot tsunami slosh, and map the seafloor, but could she identify river height anomalies in the data indicating a wave on the move?
      She found that the mission had caught three clear examples of river waves, including one that arose abruptly on the Yellowstone River in Montana in April 2023. As the satellite passed overhead, it observed a 9.1-foot-tall (2.8-meter-tall) crest flowing toward the Missouri River in North Dakota. It was divided into a dramatic 6.8-mile-long (11-kilometer-long) peak followed by a more drawn‐out tail. These details are exciting to see from orbit and illustrate the KaRIn instrument’s uniquely high spatial resolution, Thurman said.
      Sleuthing through optical Sentinel-2 imagery of the area, she determined that the wave likely resulted from an ice jam breaking apart upstream and releasing pent-up water.
      The other two river waves that Thurman and the team found were triggered by rainfall runoff. One, spotted by SWOT starting on Jan. 25, 2024, on the Colorado River south of Austin, Texas, was associated with the largest flood of the year on that section of river. Measuring over 30 feet (9 meters) tall and 166 miles (267 kilometers) long, it traveled around 3.5 feet (1.07 meters) per second for over 250 miles (400 kilometers) before discharging into Matagorda Bay.
      The other wave originated on the Ocmulgee River near Macon, Georgia, in March 2024. Measuring over 20 feet (6 meters) tall and extending more than 100 miles (165 kilometers), it traveled about a foot (0.33 meters) per second for more than 124 miles (200 kilometers).
      “We’re learning more about the shape and speed of flow waves, and how they change along long stretches of river,” Thurman said. “That could help us answer questions like, how fast could a flood get here and is infrastructure at risk?”
      Complementary Observations
      Engineers and water managers measuring river waves have long relied on stream gauges, which record water height and estimate discharge at fixed points along a river. In the United States, stream gauge networks are maintained by agencies including the U.S. Geological Survey. They are sparser in other parts of the world.
      “Satellite data is complementary because it can help fill in the gaps,” said study supervisor George Allen, a hydrologist and remote sensing expert at Virginia Tech.
      If stream gauges are like toll booths clocking cars as they pass, SWOT is like a traffic helicopter taking snapshots of the highway.
      The wave speeds that SWOT helped determine were similar to those calculated using gauge data alone, Allen said, showing how the satellite could help monitor waves in river basins without gauges. Knowing where and why river waves develop can help scientists tracking changing flood patterns around the world.
      Orbiting Earth multiple times each day, SWOT is expected to observe some 55% of large-scale floods at some stage in their life cycle. “If we see something in the data, we can say something,” David said of SWOT’s potential to flag dangerous floods in the making. “For a long time, we’ve stood on the banks of our rivers, but we’ve never seen them like we are now.”
      More About SWOT
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations. The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      Written by Sally Younger
      2025-074




      Share
      Details
      Last Updated May 21, 2025 Related Terms
      SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Explore More
      3 min read Devil’s in Details in Selfie Taken by NASA’s Mars Perseverance Rover
      Article 2 hours ago 5 min read NASA’s Perseverance Mars Rover to Take Bite Out of ‘Krokodillen’
      Article 2 days ago 6 min read NASA, French SWOT Satellite Offers Big View of Small Ocean Features
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      X-FLARE Update - Did You See This Giant Solar Flare Today? 13th May - AR4086 Flare and CME
    • By Space Force
      128 Air Force Reserve Professionals who will transfer into the Space Force in a full-time capacity.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      How can I see the northern lights?

      To see the northern lights, you need to be in the right place at the right time.

      Auroras are the result of charged particles and magnetism from the Sun called space weather dancing with the Earth’s magnetic field. And they happen far above the clouds. So you need clear skies, good space weather at your latitude and the higher, more polar you can be, the better. You need a lot of patience and some luck is always helpful.

      A smartphone can also really help confirm whether you saw a little bit of kind of dim aurora, because cameras are more sensitive than our eyes.

      The best months to see aurorae, statistically, are March and September. The best times to be looking are around midnight, but sometimes when the Sun is super active, it can happen any time from sunset to sunrise.

      You can also increase your chances by learning more about space weather data and a great place to do that is at the NOAA Space Weather Prediction Center.

      You can also check out my project, Aurorasaurus.org, where we have free alerts that are based on your location and we offer information about how to interpret the data. And you can also report and tell us if you were able to see aurora or not and that helps others.

      One last tip is finding a safe, dark sky viewing location with a great view of the northern horizon that’s near you.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Mar 26, 2025 Related Terms
      Science Mission Directorate Auroras Heliophysics Planetary Science Division The Solar System The Sun Explore More
      6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
      Article 1 hour ago 6 min read NASA’s Webb Captures Neptune’s Auroras For First Time
      Long-sought auroral glow finally emerges under Webb’s powerful gaze For the first time, NASA’s James…
      Article 7 hours ago 5 min read NASA’s Parker Solar Probe Team Wins 2024 Collier Trophy
      The innovative team of engineers and scientists from NASA, the Johns Hopkins Applied Physics Laboratory…
      Article 22 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...