Jump to content

NASA Data Shows How Drought Changes Wildfire Recovery in the West


Recommended Posts

  • Publishers
Posted

4 min read

NASA Data Shows How Drought Changes Wildfire Recovery in the West

Bright orange flames from California’s 2017 Thomas Fire burn a hillside as dark smoke rises. A Forest Service truck and worker is in the foreground.
California’s 2017 Thomas Fire (shown) was included in a new analysis of more than 1,500 wildland fires teasing out how drought and fire combine to affect western U.S. lands.
USDA Forest Service/ Stuart Palley

A new study using NASA satellite data reveals how drought affects the recovery of western ecosystems from fire, a result that could provide meaningful information for conservation efforts.

The West has been witnessing a trend of increasing number and intensity of wildland fires. Historically a natural part of the region’s ecology, fires have been exacerbated by climate change—including more frequent and intense droughts—and past efforts to suppress fires, which can lead to the accumulation of combustible material like fallen branches and leaves. But quantifying how fire and drought jointly affect ecosystems has proven difficult.

In the new study, researchers analyzed over 1,500 fires from 2014 to 2020 across the West, and also gathered data on drought conditions dating back to 1984. They found that droughts make it harder for grasslands and shrublands, such as those in Nevada and Utah, to recover after fires—even the less severe blazes. Forests, if not burned too badly, rebound better than grasslands and shrublands because some forest roots can tap into water deeper in the ground. The team reported its findings in the February 2024 issue of Nature Ecology & Environment.

“Many of the West’s grasslands experience low-severity fires,” said Shahryar Ahmed, lead author of the study and a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This study shows that even those blazes can trigger a slow recovery in these ecosystems if accompanied by a preceding drought.”

If ecosystems don’t have enough time to bounce back before another drought or fire, that could lead to permanent changes in the types of plants growing there. That, in turn, can increase the risk of soil erosion and landslides, and alter the usual patterns of water running off into streams and lakes.

“Once a fire is contained, that’s when the remediation efforts happen,” said Everett Hinkley, the national remote sensing program manager for the U.S. Forest Service, who wasn’t involved in the new research. “Understanding how a particular ecosystem and land cover type is going to respond after the fire informs what actions you need to take to restore the landscape.”

Without such restoration, changes in land cover can cascade to potentially affect agriculture, tourism, and other community livelihoods. To track the recovery of the different ecosystems, the researchers examined changes in evapotranspiration (ET)—the transfer of water to the atmosphere through evaporation from soil and open water and transpiration from plants—before and after the fires. Monitoring evapotranspiration helped the team identify whether different ecosystems, such as forests and grasslands, completely recovered after a fire, or if the recovery was delayed or disrupted.

That evapotranspiration data came from OpenET, a tool that calculates evapotranspiration at the scale of a quarter-acre across the western United States. It does so using models that harness publicly available data from the Landsat program, a partnership between NASA and the U.S. Geological Survey, along with other NASA and NOAA satellites.

“This study highlights the dominant control of drought on altering resilience of vegetation to fires in the West,” said Erin Urquhart, the water resources program manager at NASA Headquarters in Washington. “With ongoing climate change, it is imperative that land managers, policymakers, and communities work together, informed by such research, to adapt to these changes, mitigating risks and ensuring the sustainable use of water and other natural resources.”

The research also showed that forests, grasslands, and shrublands all struggle to recover from droughts that occur close in time with high-severity fires, which are becoming more common in the West. That can lead to potentially lasting changes not only in the plant communities but also in local and regional water dynamics.

Severe fires damage plants to such an extent that evapotranspiration is greatly reduced in the following years, the researchers found. So instead of evaporating into the atmosphere, more water sinks into the ground as recharge or becomes runoff.

Using a subset of nearly 800 fires from 2016 to 2018, the researchers calculated that across all the ecoregions in the study, an average of about 528 billion gallons (two cubic kilometers) of water was diverted as runoff or recharge during the first year after a fire. That’s equivalent to North Dakota’s annual water demand, or one quarter of Shasta Lake, California’s largest humanmade lake.

When more water becomes runoff, it means less could be available for ecosystem recovery or agriculture. As Earth’s climate continues to warm, understanding these shifts is crucial for developing strategies to manage water resources more effectively and ensure water security for future generations.

By: Emily DeMarco, NASA Earth Science Division

Share

Details

Last Updated
Mar 27, 2024
Editor
Emily DeMarco
Contact

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA Expands SPHEREx Science Return Through Commercial Partnership
      A sectional rendering of NASA's SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer). Credits: NASA NASA is partnering with commercial industry to expand our knowledge of Earth, our solar system, and beyond. Recently, NASA collaborated with Kongsberg Satellite Services (KSAT) to support data transfer for the agency’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) mission to explore the origins of the universe. 
      “Not only is NASA moving toward commercialization, the agency is making technological advancements to existing systems and saving millions of dollars in the process — all while expanding human knowledge through science and exploration missions,” said Kevin Coggins, associate administrator for NASA’s SCaN (Space Communications and Navigation) program.
      To receive data from missions in space, NASA relies on the Near Space Network and Deep Space Network, a collection of antennas around the globe.
      In preparation for the recently-launched SPHEREx observatory, NASA needed to upgrade an antenna on the world’s most remote continent: Antarctica.
      Transmitted via NASA’s Near Space Network, this video shows SPHEREx scanning a region of the Large Magellanic Cloud. The shifting colors represent different infrared wavelengths detected by the telescope’s two arrays. Credit: NASA/JPL-Caltech NASA’s SCaN program took a novel approach by leveraging its established commercial partnership with KSAT. While upgraded KSAT antennas were added to the Near Space Network in 2023, SPHEREx required an additional Antarctic antenna that could link to online data storage.
      To support SPHEREx’s polar orbit, KSAT upgraded its Troll, Antarctica antenna and incorporated their own cloud storage system. NASA then connected KSAT’s cloud to the NASA cloud, DAPHNE+ (Data Acquisition Process and Handling Environment).
      As the Near Space Network’s operational cloud services system, DAPHNE+ enables science missions to transmit their data to the network for virtual file storage, processing, and management. 
      “By connecting the Troll antenna to DAPHNE+, we eliminated the need for large, undersea fiberoptic cables by virtually connecting private and government-owned cloud systems, reducing the project’s cost and complexity,” said Matt Vincent, the SPHEREx mission manager for the Near Space Network at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Each day, SPHEREx downlinks a portion of its 20 gigabits of science data through the Troll antenna, which transfers the files across KSAT’s network of relay satellites to the DAPHNE+ cloud. The cloud system combines and centralizes the data from each antenna, allowing access to all of SPHEREx’s health and science data in one convenient place. 
      The SPHEREx mission data is transmitted from space to the Troll Satellite Station, relayed through a network of satellites, and stored in the Near Space Network’s cloud system for easily-accessible analysis by scientists around the world.NASA/Dave Ryan With coverage throughout its orbit, SPHEREx transmits its 3D maps of the celestial sky, offering new insight into what happened a fraction of a second after the big bang. 
      “Missions like SPHEREx use the Near Space Network’s combination of commercial and government antennas,” explained Michael Skube, DAPHNE+ manager at NASA Goddard. “And that is the benefit of DAPHNE+ — it enables the network to pull different sources of information into one central location. The DAPHNE+ system treats government and commercial antennas as part of the same network.” 
      The partnership is mutually beneficial. NASA’s Near Space Network maintains a data connection with SPHEREx as it traverses both poles and KSAT benefits from its antennas’ integration into a robust global network – no new cables required. 
       “We were able to find a networking solution with KSAT that did not require us to put additional hardware in Antarctica,” said Vincent. “Now we are operating with the highest data rate we have ever downlinked from that location.” 
      The upgraded ground station antenna at Troll Satellite Station supports cloud-based space communications, enabling NASA’s Near Space Network to support scientific missions via a wireless cloud network.Kongsberg Satellite Services For NASA, its commercial partners, and other global space agencies, this expansion means more reliable space communications with fewer expenses. 
      Troll’s successful integration into the Near Space Network is a case study for future private and government partnerships. As SPHEREx measures the collective glow of over 450 million galaxies as far as 10 billion light-years away, SCaN continues to innovate how its discoveries safely return to Earth. 
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory in Southern California for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Funding and oversight for DAPHNE+ and the Near Space Network come from the SCaN program office at NASA Headquarters and operate out of NASA’s Goddard Space Flight Center. The Troll Satellite Station is owned and operated by Kongsberg Satellite Services and located in Queen Maud Land, Antarctica. 
      About the Author
      Korine Powers
      Lead Writer and Communications StrategistKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, exploration activities, and more.
      Share
      Details
      Last Updated May 06, 2025 Related Terms
      Communicating and Navigating with Missions Commercial Space Space Communications & Navigation Program SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) View the full article
    • By NASA
      6 min read
      NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
      This North Atlantic right whale, named “Bowtie,” was spotted feeding in southern Maine waters in January 2025. A new technique aims to use NASA satellite data to see the plankton these whales depend on from space. Credit: New England Aquarium, taken under NMFS permit # 25739 In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape. The North Atlantic right whale filters clouds of tiny reddish zooplankton — called Calanus finmarchicus — from the sea. These zooplankton, no bigger than grains of rice, are the whale’s lifeline. Only about 370 of these massive creatures remain.
      For decades, tracking the tiny plankton meant sending research vessels out in the ocean, towing nets and counting samples by hand. Now, scientists are looking from above instead.
      Using NASA satellite data, researchers found a way to detect Calanus swarms at the ocean surface in the Gulf of Maine, picking up on the animals’ natural red pigment. This early-stage approach, described in a new study, may help researchers better estimate where the copepods gather, and where whales might follow.
      Tracking the zooplankton from space could aid both the whales and maritime industries. By predicting where these mammals are likely to feed, researchers and marine resource managers hope to reduce deadly vessel strikes and fishing gear entanglements — two major threats to the species. Knowing the feeding patterns could also help shipping and fishing industries operate more efficiently.
      Calanus finmarchicus, a tiny zooplankton powering North Atlantic food webs, fuels right whale populations with its energy-rich lipid reserves. Credit: Cameron Thompson “NASA invests in this kind of research because it connects space-based observation with real-world challenges,” said Cynthia Hall, a support scientist at NASA headquarters in Washington. She works with the Early Career Research Program, which partly funded the work. “It’s yet another a way to put NASA satellite data to work for science, communities, and ecosystems.”
      Revealing the Ocean’s Hidden Patterns
      The new approach uses data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite. The MODIS instrument doesn’t directly see the copepods themselves. Instead, it reads how the spectrum of sunlight reflected from the ocean surface changes in response to what’s in the water.
      When large numbers of the zooplankton rise to the surface, their reddish pigment — astaxanthin, the same compound that gives salmon its pink color — subtly alters how photons, or particles of light, from the sun are absorbed or scattered in the water. The fate of these photons in the ocean depends on the mix of living and non-living matter in seawater, creating a slight shift in color that MODIS can detect.
      “We didn’t know to look for Calanus before in this way,” said Catherine Mitchell, a satellite oceanographer at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine. “Remote sensing has typically focused on smaller things like phytoplankton. But recent research suggested that larger, millimeter-sized organisms like zooplankton can also influence ocean color.”
      A few years ago, researchers piloted a satellite method for detecting copepods in Norwegian waters. Now, some of those same scientists — along with Mitchell’s team — have refined the approach and applied it to the Gulf of Maine, a crucial feeding ground for right whales during their northern migration. By combining satellite data, a model, and field measurements, they produced enhanced images that revealed Calanus swarms at the sea surface, and were able to estimate numbers of the tiny animals.
      “We know the right whales are using habitats we don’t fully understand,” said Rebekah Shunmugapandi, also a satellite oceanographer at Bigelow and the study’s lead author. “This satellite-based Calanus information could eventually help identify unknown feeding grounds or better anticipate where whales might travel.”
      Tracking Elusive Giants
      Despite decades of study, North Atlantic right whales remain remarkably enigmatic to scientists. Once fairly predictable in their movements along the Eastern Seaboard of North America, these massive mammals began abandoning some traditional feeding grounds in 2010-2011. Their sudden shift to unexpected areas like the Gulf of Saint Lawrence caught people off guard, with deadly consequences.
      “We’ve had whales getting hit by ships and whales getting stuck in fishing gear,” said Laura Ganley, a research scientist in the Anderson Cabot Center for Ocean Life at the New England Aquarium in Boston, which conducts aerial and boat surveys of the whales.  
      In 2017, the National Oceanic and Atmospheric Administration designated the situation as an “unusual mortality event” in an effort to address the whales’ decline. Since then, 80 North Atlantic right whales have been killed or sustained serious injuries, according to NOAA.
      NASA satellite imagery from June 2009 was used to test a new method for detecting the copepod Calanus finmarchicus in the Gulf of Maine and estimating their numbers from space. Credit: NASA Earth Observatory image by Wanmei Liang, using data from Shunmugapandi, R., et al. (2025) In the Gulf of Maine, there’s less shipping activity, but there can be a complex patchwork of lobster fishing gear, said Sarah Leiter, a scientist with the Maine Department of Marine Resources. “Each fisherman has 800 traps or so,” Leiter explained. “If a larger number of whales shows up suddenly, like they just did in January 2025, it is challenging. Fishermen need time and good weather to adjust that gear.”
      What excites Leiter the most about the satellite data is the potential to use it in a forecasting tool to help predict where the whales could go. “That would be incredibly useful in giving us that crucial lead time,” she said.
      PACE: The Next Generation of Ocean Observer
      For now, the Calanus-tracking method has limitations. Because MODIS detects the copepods’ red pigment, not the animals themselves, that means other small, reddish organisms can be mistaken for the zooplankton. And cloud cover, rough seas, or deeper swarms all limit what satellites can spot.
      MODIS is also nearing the end of its operational life. But NASA’s next-generation PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) satellite — launched in 2024 — is poised to make dramatic improvements in the detection of zooplankton and phytoplankton.
      NASA’s Ocean Color Instrument on the PACE satellite captured these swirling green phytoplankton blooms in the Gulf of Maine in April 2024. Such blooms fuel zooplankton like Calanus finmarchicus. Credit: NASA “The PACE satellite will definitely be able to do this, and maybe even something better,” said Bridget Seegers, an oceanographer and mission scientist with the PACE team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The PACE mission includes the Ocean Color Instrument, which detects more than 280 wavelengths of light. That’s a big jump from the 10 wavelengths seen by MODIS. More wavelengths mean finer detail and better insights into ocean color and the type of plankton that the satellite can spot.
      Local knowledge of seasonal plankton patterns will still be essential to interpret the data correctly. But the goal isn’t perfect detection, the scientists say, but rather to provide another tool to inform decision-making, especially when time or resources are limited.
      By Emily DeMarco
      NASA Headquarters
      Share








      Details
      Last Updated May 05, 2025 Editor Emily DeMarco Related Terms
      Earth Moderate Resolution Imaging Spectroradiometer (MODIS) Oceans PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      3 min read NASA Tracks Snowmelt to Improve Water Management
      As part of a science mission tracking one of Earth’s most precious resources – water…


      Article


      2 weeks ago
      5 min read NASA Airborne Sensor’s Wildfire Data Helps Firefighters Take Action
      Data from the AVIRIS-3 sensor was recently used to create detailed fire maps in minutes,…


      Article


      2 weeks ago
      3 min read Celebrating Earth as Only NASA Can
      Lee esta historia en español aquí. From the iconic image of Earthrise taken by Apollo 8…


      Article


      2 weeks ago
      View the full article
    • By NASA
      NASA Langley highlights its Cirrus Design SR22 during Air Power Over Hampton Roads STEM Day. NASA/Angelique Herring NASA Langley Research Center’s integral role in the past, present, and future of flight was on full display April 25-27 during the Air Power Over Hampton Roads air show.
      The air show, held at Joint Base Langley-Eustis (JBLE), which neighbors NASA Langley in Hampton, Virginia, attracted thousands of spectators throughout the weekend.
      The weekend kicked off with a STEM Day on April 25. Langley’s Office of STEM Engagement (OSTEM) offered educational and engaging activities, exhibits, and displays to share NASA missions and encourage K-12 students from local schools to explore the possibilities that science, technology, engineering, and math offer.
      “Participation in the air show allows us to share NASA’s work in aeronautics with the public and provides an opportunity for Langley researchers and engineers to work directly with students and families to share the exciting work they do,” said Bonnie Murray, Langley OSTEM Student Services manager.
      NASA Langley personnel inspire young minds during Air Power Over Hampton Roads STEM Day.NASA/Angelique Herring Langley OSTEM’s participation continued throughout the weekend as a part of the air show’s STEM Expo, where visitors to the NASA booths tested a paper helicopter in a small-scale wind tunnel to explore flight dynamics, learned how NASA uses X-planes for research and designed their own X-plane, and tested experimental paper airplanes of various designs. By observing flight of the plane designs and making improvements to each one, students participated in the engineering design process. NASA subject matter experts in attendance guided students through these activities, inspired young minds by sharing some of their innovations, and promoted a variety of STEM career paths.
      “Through engagement in the NASA STEM Zone activities, students had an opportunity to see themselves in the role of a NASA researcher,” Murray said. “Authentic learning experiences such as these help build children’s STEM identity, increasing the likelihood of them pursuing STEM careers in the future.”
      A child enjoys NASA STEM activities during Air Power Over Hampton Roads STEM Day.NASA/Angelique Herring The air show’s static aircraft displays included NASA Langley’s Cirrus Design SR22, a research aircraft used to support NASA’s airborne science program, the science community, and aeronautics research.
      “Reflective of our strong, long-standing partnership with JBLE, NASA Langley was proud to participate in this year’s Air Power Over Hampton Roads air show,” said Glenn Jamison, director of Langley’s Research Services Directorate. “Our relationship spans back to 1917 when NACA and Langley Field evolved together over formative years in aerodynamic research, sharing the airspace and facilities here in Hampton. Today, we continue our collaboration with JBLE in pursuing shared interests and finding innovative solutions to complex problems.”
      The displays also featured several small Unmanned Aircraft Systems (sUAS) and NASA’s P-3 Orion, a research aircraft based at NASA’s Wallops Flight Facility on Wallops Island, Virginia.
      Air show visitors could explore a picture display that highlighted NASA Langley’s rich aviation legacy, from its founding in 1917 to Langley’s work today to accelerate advancements in aeronautics, science, and space technology and exploration. Spacey Casey, a crowd favorite, greeted and took pictures with educators, students, and guests throughout the weekend, bringing out-of-this-world smiles to their faces. Members of Langley’s Office of the Director also represented the center at the event.

      Brittny McGraw
      NASA Langley Research Center
      View the full article
    • By European Space Agency
      ESA Director General Josef Aschbacher emphasises the importance of cooperation in space activities
      View the full article
    • By NASA
      Researchers with NASA’s Exploration Research and Technology programs conduct molten regolith electrolysis testing inside Swamp Works at NASA’s Kennedy Space Center in Florida on Thursday, Dec. 5, 2024.NASA/Kim Shiflett As NASA works to establish a long-term presence on the Moon, researchers have reached a breakthrough by extracting oxygen at a commercial scale from simulated lunar soil at Swamp Works at NASA’s Kennedy Space Center in Florida. The achievement moves NASA one step closer to its goal of utilizing resources on the Moon and beyond instead of relying only on supplies shipped from Earth.
      NASA Kennedy researchers in the Exploration Research and Technology programs teamed up with Lunar Resources Inc. (LUNAR), a space industrial company in Houston, Texas, to perform molten regolith electrolysis. Researchers used the company’s resource extraction reactor, called LR-1, along with NASA Kennedy’s vacuum chamber. During the recent vacuum chamber testing, molecular oxygen was measured in its pure form along with the production of metals from a batch of dust and rock that simulates lunar soil, often referred to as “regolith,” in the industry.
      “This is the first time NASA has produced molecular oxygen using this process,” said Dr. Annie Meier, molten regolith electrolysis project manager at NASA Kennedy. “The process of heating up the reactor is like using an elaborate cooking pot. Once the lid is on, we are essentially watching the gas products come out.”
      During testing, the vacuum environment chamber replicated the vacuum pressure of the lunar surface. The extraction reactor heated about 55 pounds (25 kilograms) of simulated regolith up to a temperature of 3100°F (1700°C) until it melted. Researchers then passed an electric current through the molten regolith until oxygen in a gas form was separated from the metals of the soil. They measured and collected the molecular oxygen for further study.
      In addition to air for breathing, astronauts could use oxygen from the Moon as a propellant for NASA’s lunar landers and for building essential infrastructure. This practice of in-situ resource utilization (ISRU) also decreases the costs of deep space exploration by reducing the number of resupply missions needed from Earth.
      Once the process is perfected on Earth, the reactor and its subsystems can be delivered on future missions to the Moon. Lunar rovers, similar to NASA’s ISRU Pilot Excavator, could autonomously gather the regolith to bring back to the reactor system to separate the metals and oxygen.
      “Using this unique chemical process can produce the oxidizer, which is half of the propellant mix, and it can create vital metals used in the production of solar panels that in turn could power entire lunar base stations,” said Evan Bell, mechanical structures and mechatronics lead at NASA Kennedy.
      Post-test data analysis will help the NASA and LUNAR teams better understand the thermal and chemical function of full-scale molten regolith electrolysis reactors for the lunar surface. The vacuum chamber and reactor also can be upgraded to represent other locations of the lunar environment as well as conditions on Mars for further testing.
      Researchers at NASA Kennedy began developing and testing molten regolith electrolysis reactors in the early 1990s. Swamp Works is a hands-on learning environment facility at NASA Kennedy that takes ideas through development and into application to benefit space exploration and everyone living on Earth. From 2019 to 2023, Swamp Works developed an early concept reactor under vacuum conditions named Gaseous Lunar Oxygen from Regolith Electrolysis (GaLORE). Scientists at NASA’s Johnson Space Center in Houston conducted similar testing in 2023, removing carbon monoxide from simulated lunar regolith in a vacuum chamber.
      “We always say that Kennedy Space Center is Earth’s premier spaceport, and this breakthrough in molten regolith electrolysis is just another aspect of us being the pioneers in providing spaceport capabilities on the Moon, Mars, and beyond,” Bell said.
      NASA’s Exploration Research and Technology programs, related laboratories, and research facilities develop technologies that will enable human deep space exploration. NASA’s Game Changing Development program, managed by the agency’s Space Technology Mission Directorate funded the project.
      View the full article
  • Check out these Videos

×
×
  • Create New...