Jump to content

Tech Today: Cutting the Knee Surgery Cord


Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Lazurite's ArthroFree Wireless Camera System on a table, held by a person wearing surgical gloves.
Lazurite’s ArthroFree Wireless Camera System incorporated aerospace-grade lithium-ion batteries after developers consulted with NASA engineers.
Credit: Lazurite Holdings LLC

After Eugene Malinskiy saw a physician assistant trip over arthroscopic camera cords during a medical procedure, he and his brother, Ilya, set out to develop a wireless arthroscopic camera.

Early in the development process, the Malinskiys got a boost from engineers at NASA’s Glenn Research Center in Cleveland, who advised on technical specifications through the center’s Adopt-a-City program. This agency program enabled Glenn engineers to consult with them pro bono via a Space Act Agreement with the city of Cleveland.

The team also consulted with NASA engineers on their plan to use the ultra-wideband protocol – radio technology enabling encrypted transfer of a high-definition signal – and their planned processors and chips used in the device’s central processing unit.

Ilya Malinskiy said the company gave investors the space agency engineers’ feedback. “Being able to say we had very skilled NASA engineers take a look at our device and say we should keep going was very, very useful.”

It turned out that the first wireless arthroscopic camera wasn’t entirely unlike CubeSats – tiny satellites that often orbit Earth in clusters.

“We had a lot of the same issues,” Ilya Malinskiy said. “We both have very small devices that need reliable power without adding a lot of weight.”

Ultimately, the NASA engineers connected the Lazurite team with several high-fidelity aerospace lithium-ion battery vendors.

In 2022, Lazurite’s ArthroFree Wireless Camera System became the first FDA-cleared wireless camera system for minimally invasive surgery. Since then, the device has assisted in countless surgeries, and the company has raised tens of millions of dollars.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Honolulu is pictured here beside a calm sea in 2017. A JPL technology recently detected and confirmed a tsunami up to 45 minutes prior to detection by tide gauges in Hawaii, and it estimated the speed of the wave to be over 580 miles per hour (260 meters per second) near the coast.NASA/JPL-Caltech A massive earthquake and subsequent tsunami off Russia in late July tested an experimental detection system that had deployed a critical component just the day before.
      A recent tsunami triggered by a magnitude 8.8 earthquake off Russia’s Kamchatka Peninsula sent pressure waves to the upper layer of the atmosphere, NASA scientists have reported. While the tsunami did not wreak widespread damage, it was an early test for a detection system being developed at the agency’s Jet Propulsion Laboratory in Southern California.
      Called GUARDIAN (GNSS Upper Atmospheric Real-time Disaster Information and Alert Network), the experimental technology “functioned to its full extent,” said Camille Martire, one of its developers at JPL. The system flagged distortions in the atmosphere and issued notifications to subscribed subject matter experts in as little as 20 minutes after the quake. It confirmed signs of the approaching tsunami about 30 to 40 minutes before waves made landfall in Hawaii and sites across the Pacific on July 29 (local time).
      “Those extra minutes of knowing something is coming could make a real difference when it comes to warning communities in the path,” said JPL scientist Siddharth Krishnamoorthy.
      Near-real-time outputs from GUARDIAN must be interpreted by experts trained to identify the signs of tsunamis. But already it’s one of the fastest monitoring tools of its kind: Within about 10 minutes of receiving data, it can produce a snapshot of a tsunami’s rumble reaching the upper atmosphere.
      The dots in this graph indicate wave disturbances in the ionosphere as measured be-tween ground stations and navigation satellites. The initial spike shows the acoustic wave coming from the epicenter of the July 29 quake that caused the tsunami; the red squiggle shows the gravity wave the tsunami generated.NASA/JPL-Caltech The goal of GUARDIAN is to augment existing early warning systems. A key question after a major undersea earthquake is whether a tsunami was generated. Today, forecasters use seismic data as a proxy to predict if and where a tsunami could occur, and they rely on sea-based instruments to confirm that a tsunami is passing by. Deep-ocean pressure sensors remain the gold standard when it comes to sizing up waves, but they are expensive and sparse in locations.
      “NASA’s GUARDIAN can help fill the gaps,” said Christopher Moore, director of the National Oceanic and Atmospheric Administration Center for Tsunami Research. “It provides one more piece of information, one more valuable data point, that can help us determine, yes, we need to make the call to evacuate.”
      Moore noted that GUARDIAN adds a unique perspective: It’s able to sense sea surface motion from high above Earth, globally and in near-real-time.
      Bill Fry, chair of the United Nations technical working group responsible for tsunami early warning in the Pacific, said GUARDIAN is part of a technological “paradigm shift.” By directly observing ocean dynamics from space, “GUARDIAN is absolutely something that we in the early warning community are looking for to help underpin next generation forecasting.”
      How GUARDIAN works
      GUARDIAN takes advantage of tsunami physics. During a tsunami, many square miles of the ocean surface can rise and fall nearly in unison. This displaces a significant amount of air above it, sending low-frequency sound and gravity waves speeding upwards toward space. The waves interact with the charged particles of the upper atmosphere — the ionosphere — where they slightly distort the radio signals coming down to scientific ground stations of GPS and other positioning and timing satellites. These satellites are known collectively as the Global Navigation Satellite System (GNSS).
      While GNSS processing methods on Earth correct for such distortions, GUARDIAN uses them as clues.
      SWOT Satellite Measures Pacific Tsunami The software scours a trove of data transmitted to more than 350 continuously operating GNSS ground stations around the world. It can potentially identify evidence of a tsunami up to about 745 miles (1,200 kilometers) from a given station. In ideal situations, vulnerable coastal communities near a GNSS station could know when a tsunami was heading their way and authorities would have as much as 1 hour and 20 minutes to evacuate the low-lying areas, thereby saving countless lives and property.
      Key to this effort is the network of GNSS stations around the world supported by NASA’s Space Geodesy Project and Global GNSS Network, as well as JPL’s Global Differential GPS network that transmits the data in real time.
      The Kamchatka event offered a timely case study for GUARDIAN. A day before the quake off Russia’s northeast coast, the team had deployed two new elements that were years in the making: an artificial intelligence to mine signals of interest and an accompanying prototype messaging system.
      Both were put to the test when one of the strongest earthquakes ever recorded spawned a tsunami traveling hundreds of miles per hour across the Pacific Ocean. Having been trained to spot the kinds of atmospheric distortions caused by a tsunami, GUARDIAN flagged the signals for human review and notified subscribed subject matter experts.
      Notably, tsunamis are most often caused by large undersea earthquakes, but not always. Volcanic eruptions, underwater landslides, and certain weather conditions in some geographic locations can all produce dangerous waves. An advantage of GUARDIAN is that it doesn’t require information on what caused a tsunami; rather, it can detect that one was generated and then can alert the authorities to help minimize the loss of life and property. 
      While there’s no silver bullet to stop a tsunami from making landfall, “GUARDIAN has real potential to help by providing open access to this data,” said Adrienne Moseley, co-director of the Joint Australian Tsunami Warning Centre. “Tsunamis don’t respect national boundaries. We need to be able to share data around the whole region to be able to make assessments about the threat for all exposed coastlines.”
      To learn more about GUARDIAN, visit:
      https://guardian.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 
      Written by Sally Younger
      2025-117
      Explore More
      5 min read New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea
      Article 21 hours ago 13 min read The Earth Observer Editor’s Corner: July–September 2025
      NOTE TO READERS: After more than three decades associated with or directly employed by NASA,…
      Article 2 days ago 21 min read Summary of the 11th ABoVE Science Team Meeting
      Introduction The NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is a large-scale ecological study in the northern…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA science and American industry have worked hand-in-hand for more than 60 years, transforming novel technologies created with NASA research into commercial products like cochlear implants, memory-foam mattresses, and more. Now, a NASA-funded device for probing the interior of storm systems has been made a key component of commercial weather satellites.
      The novel atmospheric sounder was originally developed for NASA’s TROPICS (short for Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of SmallSats), which launched in 2023. Boston-based weather technology company Tomorrow.io integrated the same instrument design into some of its satellites.
      NASA’s TROPICS instrument. TROPICS pioneered a novel, compact atmospheric sound now flying aboard a fleet of commercial small satellites created by the weather technology company Tomorrow.io.Credit: Blue Canyon Technologies Atmospheric sounders allow researchers to gather data describing humidity, temperature, and wind speed — important factors for weather forecasting and atmospheric analysis. From low-Earth orbit, these devices help make air travel safer, shipping more efficient, and severe weather warnings more reliable.
      Novel tools for Observing Storm Systems
      In the early 2000s, meteorologists and atmospheric chemists were eager to find a new science tool that could peer deep inside storm systems and do so multiple times a day. At the same time, CubeSat constellations (groupings of satellites each no larger than a shoebox) were emerging as promising, low-cost platforms for increasing the frequency with which individual sensors could pass over fast-changing storms, which improves the accuracy of weather models.
      The challenge was to create an instrument small enough to fit aboard a satellite the size of a toaster, yet powerful enough to observe the innermost mechanisms of storm development. Preparing these technologies required years of careful development that was primarily supported by NASA’s Earth Science Division.
      William Blackwell and his team at MIT Lincoln Laboratory in Cambridge, Massachusetts, accepted this challenge and set out to miniaturize vital components of atmospheric sounders. “These were instruments the size of a washing machine, flying on platforms the size of a school bus,” said Blackwell, the principal investigator for TROPICS. “How in the world could we shrink them down to the size of a coffee mug?”
      With a 2010 award from NASA’s Earth Science Technology Office (ESTO), Blackwell’s team created an ultra-compact microwave receiver, a component that can sense the microwave radiation within the interior of storms.
      The Lincoln Lab receiver weighed about a pound and took up less space than a hockey puck. This innovation paved the way for a complete atmospheric sounder instrument small enough to fly aboard a CubeSat. “The hardest part was figuring out how to make a compact back-end to this radiometer,” Blackwell said. “So without ESTO, this would not have happened. That initial grant was critical.”
      In 2023, that atmospheric sounder was sent into space aboard four TROPICS CubeSats, which have been collecting torrents of data on the interior of severe storms around the world.
      Transition to Industry
      By the time TROPICS launched, Tomorrow.io developers knew they wanted Blackwell’s microwave receiver technology aboard their own fleet of commercial weather satellites. “We looked at two or three different options, and TROPICS was the most capable instrument of those we looked at,” said Joe Munchak, a senior atmospheric data scientist at Tomorrow.io.
      In 2022, the company worked with Blackwell to adapt his team’s design into a CubeSat platform about twice the size of the one used for TROPICS. A bigger platform, Blackwell explained, meant they could bolster the sensor’s capabilities.
      “When we first started conceptualizing this, the 3-unit CubeSat was the only game in town. Now we’re using a 6-unit CubeSat, so we have room for onboard calibration,” which improves the accuracy and reliability of gathered data, Blackwell said.
      Tomorrow.io’s first atmospheric sounders, Tomorrow-S1 and Tomorrow-S2, launched in 2024. By the end of 2025, the company plans to have a full constellation of atmospheric sounders in orbit. The company also has two radar instruments that were launched in 2023 and were influenced by NASA’s RainCube instrument — the first CubeSat equipped with an active precipitation radar.
      More CubeSats leads to more accurate weather data because there are more opportunities each day — revisits — to collect data. “With a fleet size of 18, we can easily get our revisit rate down to under an hour, maybe even 40 to 45 minutes in most places. It has a huge impact on short-term forecasts,” Munchak said.
      Having access to an atmospheric sounder that had already flown in space and had more than 10 years of testing was extremely useful as Tomorrow.io planned its fleet. “It would not have been possible to do this nearly as quickly or nearly as affordably had NASA not paved the way,” said Jennifer Splaingard, Tomorrow.io’s senior vice president for space and sensors.
      A Cycle of Innovation
      The relationship between NASA and industry is symbiotic. NASA and its grantees can drive innovation and test new tools, equipping American businesses with novel technologies they may otherwise be unable to develop on their own. In exchange, NASA gains access to low-cost data sets that can supplement information gathered through its larger science missions.
      Tomorrow.io was among eight companies selected by NASA’s Commercial SmallSat Data Acquisition (CSDA) program in September 2024 to equip NASA with data that will help improve weather forecasting models. “It really is a success story of technology transfer. It’s that sweet spot, where the government partners with tech companies to really take an idea, a proven concept, and run with it,” Splaingard said.
      By Gage Taylor
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 02, 2025 Related Terms
      Earth Hurricanes & Typhoons TROPICS (Time-Resolved Observations of Precipitation Structure and Storm Intensity with a Constellation of Smallsats) View the full article
    • By USH
      Everything we know about 3I/ATLAS to date: 
      On July 1, 2025, the Asteroid Terrestrial-impact Last Alert System (ATLAS) station at Río Hurtado, Chile, detected something extraordinary: a fast-moving object flagged with the provisional designation A11pl3Z, later named 3I/ATLAS, also cataloged as C/2025 N1 (ATLAS). 
      At first glance, it was classified as a comet. But almost immediately, astronomers realized that this visitor was anything but ordinary.  
      3I/ATLAS imaged by the James Webb Space Telescope's NIRSpec on 6 August 2025. 
      Why 3I/ATLAS is different. 
      1. Interstellar Origins Like ʻOumuamua (1I/2017 U1) and Borisov (2I/2019 Q4) before it, 3I/ATLAS is only the third confirmed interstellar object to enter our solar system. Its steep hyperbolic orbit—with an eccentricity greater than 1.02—proves it is not gravitationally bound to the Sun. 
      2. A Composition Unlike Any Comet Most comets are rich in water ice. Not 3I/ATLAS. Spectroscopic analysis from both the Hubble Space Telescope and James Webb Space Telescope (JWST) revealed it is dominated by carbon dioxide with one of the highest CO₂-to-water ratios ever measured. This makes it chemically alien compared to the comets that formed in our own solar system. 
      3. A Tail That Breaks the Rules Comets typically sprout tails pointing away from the Sun, driven by sublimating ice. 3I/ATLAS, however, displays a dust plume angled toward the Sun—a tail in the “wrong” direction. This phenomenon has never been observed in a natural comet and suggests either unusual physics or engineered behavior. 
      4. Perfectly Aligned Trajectory Instead of cutting randomly across the solar system, 3I/ATLAS travels almost exactly along the ecliptic plane, the flat orbital path where Earth, Mars, and most of the planets reside. Statistically, the odds of a random interstellar object aligning this precisely are less than 0.005%. 
      5. Unexplained Acceleration Data from radar tracking and JWST confirm subtle but persistent non-gravitational acceleration. Normally, such changes are explained by outgassing jets. Yet Webb detects no coma, no jets, no thermal signature to explain the push. Instead, the acceleration resembles controlled propulsion, similar to how an ion engine expels dust or gas for thrust.  
      6. Forward-Facing Glow: Instead of a tail behind it, 3I/ATLAS shines with a glow ahead of its motion, almost as if it were illuminating its path. 
      7. Stabilized Rotation: Unlike natural tumbling comets, it appears to maintain attitude control, consistent with artificial stabilization. 
      8. Speculations of nuclear propulsion: Harvard astrophysicist Avi Loeb, already known for his bold ʻOumuamua interpretations, has highlighted its non-gravitational acceleration and trajectory. He even speculated that 3I/ATLAS might be nuclear-powered technology, perhaps venting dust as thrust. 
      9. 3I/ATLAS will not simply zip past and leave. Its calculated path takes it past several key planets:  Venus flyby – August 2025 Mars encounter – September 2025 Jupiter flyby – late 2026 

      Tilted view of 3I/ATLAS's trajectory through the Solar System, with orbits and positions of planets shown. Such a sequence of planetary passes looks less like coincidence and more like a deliberate survey trajectory. 
      Finally, on October 30, 2025, the object will reach perihelion, its closest approach to the Sun. Crucially, at that moment it will be hidden directly behind the Sun from Earth’s perspective, a perfect opportunity for a stealth maneuver if it is indeed under intelligent control. 
      10. And the latest news on this object is that 3I/ATLAS shows signs of alien electroplating.  Astronomers using the Very Large Telescope (VLT) in Chile have detected something never before seen in a natural comet, a plume of pure nickel gas, laced with cyanide, but completely lacking iron. 
      This is not how comets behave. In every known case, nickel and iron are paired together in space rocks, asteroids, and cosmic debris. The absence of iron in 3I/ATLAS makes it impossible to explain through natural processes. 
      The nickel-cyanide combination looks eerily familiar to something we know from human technology: nickel-cyanide electroplating. This industrial process is used to coat and protect metals like iron, creating a corrosion-resistant shell. When heated, such a coating releases nickel vapor and cyanide gas, the exact chemical fingerprint astronomers now see venting from 3I/ATLAS. 
      Renowned astrophysicist Avi Loeb has already highlighted this bizarre discovery, stressing that the nickel-only signature matches industrial alloy production rather than anything we’d expect from natural comet chemistry. 
      Pure nickel without iron: impossible in natural comets. Nickel + cyanide plume: matches electroplated coatings. Artificial signature: hallmark of industrial processes. 
      Putting it all together, so far: It is an interstellar visitor on a hyperbolic escape path. It has a carbon dioxide–dominated composition, nearly devoid of water. It has a dust plume points toward the Sun, breaking cometary rules. It has a trajectory which is perfectly aligned with the ecliptic plane. It shows mysterious acceleration without visible outgassing. It exhibits a forward glow, possible radio emissions, and signs of stabilization. It will perform planetary flybys. It probably has nuclear propulsion. It has an electroplated shell. 

      Mainstream astronomers remain cautious, still labeling 3I/ATLAS as a comet, but with mounting evidence, we may be staring at the first tangible proof of alien technology crossing our solar system, a probe from another civilization on a reconnaissance mission, silently mapping habitable worlds before making contact.View the full article
    • By Amazing Space
      Can the Sun Really Disappear for 6 Minutes Today?
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA has released a new proposal opportunity for industry to tap into agency know-how, resources, and expertise. The Announcement of Collaboration Opportunity (ACO), managed by the Space Technology Mission Directorate, enables valuable collaboration without financial exchanges between NASA and industry partners. Instead, companies leverage NASA subject matter experts, facilities, software, and hardware to accelerate their technologies and prepare them for future commercial and government use. 
      On Wednesday, NASA issued a standing ACO announcement for partnership proposals which will be available for five years and will serve as the umbrella opportunity for topic-specific appendix releases. NASA intends to issue appendices every six to 12 months to address evolving space technology needs. The 2025 ACO appendix is open for proposals until Sept. 24.  
      NASA will host an informational webinar about the opportunity and appendix at 2 p.m. EDT on Wednesday, Aug. 6. Interested proposers are encouraged to submit questions which will be answered during the webinar and will be available online after the webinar.   
      NASA teaming with industry isn’t new – decades of partnerships have resulted in ambitious missions that benefit all of humanity. But in recent years, NASA has also played a key role as a technology enabler, providing one-of-a-kind tools, resources, and infrastructure to help commercial aerospace companies achieve their goals.  
      Since 2015, NASA has collaborated with industry on approximately 80 ACO projects. Here are some ways the collaborations have advanced space technology: 
      Lunar lander systems 
      Blue Origin and NASA worked together on several ACOs to mature the company’s lunar lander design. NASA provided technical reports and assessments and conducted tests at multiple centers to help Blue Origin advance a stacked fuel cell system for a lander’s primary power source. Other Blue Origin ACO projects evaluated high-temperature engine materials and advanced a landing navigation and guidance system. 
      Blue Origin’s Blue Moon Mark 1 (MK1) lander is delivering NASA science and technology to the Moon through the agency’s Commercial Lunar Payload Services initiative. In 2023, NASA selected Blue Origin as a Human Landing System provider to develop its Blue Moon MK2 lander for future crewed lunar exploration. 
      Artist concept of Blue Origin’s Blue Moon Mark 1 (MK1) lander.Blue Origin Blue Origin’s Blue Moon Mark 1 (MK1) lander is delivering NASA science and technology to the Moon through the agency’s Commercial Lunar Payload Services initiative. In 2023, NASA selected Blue Origin as a Human Landing System provider to develop its Blue Moon MK2 lander for future crewed lunar exploration. 
      Cryogenic fluid transfer 
      Throughout a year-long ACO, NASA and SpaceX engineers worked together to perform in-depth computational fluid analysis of proposed propellant transfer methods between two SpaceX Starship spacecraft in low-Earth orbit. The SpaceX-specific analysis utilized Starship flight data and data from previous NASA research and development to identify potential risks and help mitigate them during the early stages of commercial development. NASA also provided inputs as SpaceX developed an initial concept of operations for its orbital propellant transfer missions. 
      Artist’s concept of Starship propellant transfer in space.SpaceX SpaceX used the ACO analyses to inform the design of its Starship Human Landing System, which NASA selected in 2021 to put the first Artemis astronauts on the Moon. 
      Autonomous spacecraft navigation solution 
      Advanced Space and NASA partnered to advance the company’s Cislunar Autonomous Positioning System – software that allows lunar spacecraft to determine their location without relying exclusively on tracking from Earth.  
      Dylan Schmidt, CAPSTONE assembly integration and test lead, installs solar panels onto the CAPSTONE spacecraft at Tyvak Nano-Satellite Systems, Inc., in Irvine, California.NASA/Dominic Hart The CAPSTONE (Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment) spacecraft launched to the Moon in 2022 and continues to operate and collect critical data to refine the software. Under the ACO, Advanced Space was able to use NASA’s Lunar Reconnaissance Orbiter to conduct crosslink experiments with CAPSTONE, helping mature the navigation solution for future missions. The mission’s Cislunar Autonomous Positioning System technology was initially supported through the NASA Small Business Innovation Research program. 
      Multi-purpose laser sensing system 
      Sensuron and NASA matured a miniature, rugged fiber optic sensing system capable of taking thermal and shape measurements for multiple applications. Throughout the ACO, Sensuron benefitted from NASA’s expertise in fiber optics and electrical, mechanical, and system testing engineering to design, fabricate, and “shake and bake” its prototype laser. 
      NASA’s Armstrong Flight Research Center’s FOSS, Fiber Optic Sensing System, recently supported tests of a system designed to turn oxygen into liquid oxygen, a component of rocket fuel. Patrick Chan, electronics engineer, and NASA Armstrong’s FOSS portfolio project manager, shows fiber like that used in the testing.NASA/Genaro Vavuris Space missions could use the technology to monitor cryogenic propellant levels and determine a fuel tank’s structural integrity throughout an extended mission. The laser technology also has medical applications on Earth, which ultimately resulted in the Sensuron spinoff company, The Shape Sensing Company. 
      Flexible lunar tires 
      In 2023, Venturi Astrolab began work with NASA under an ACO to test its flexible lunar tire design. The company tapped into testing capabilities unique to NASA, including heat transfer to cold lunar soil, traction, and life testing. The data validated the performance of tire prototypes, helping ready the design to support future NASA missions. 
      In 2024, NASA selected three companies, including Venturi Astrolab, to advance capabilities for a lunar terrain vehicle that astronauts could use to travel around the lunar surface, conducting scientific research on the Moon and preparing for human missions to Mars. 
      Venturi Lab designed and developed a durable, robust, and hyper-deformable lunar wheel.Venturi Lab The Announcement of Collaboration Opportunity (ACO) is one of many ways NASA enables commercial industry to develop, build, own, and eventually operate space systems. To learn more about these technology projects and more, visit: https://techport.nasa.gov/.
      Facebook logo @NASATechnology @NASA_Technology Explore More
      2 min read NASA Seeks Industry Concepts on Moon, Mars Communications
      Article 1 week ago 1 min read USBR Seal Team Fix Challenge
      Article 1 week ago 4 min read NASA Tests New Heat Source Fuel for Deep Space Exploration
      Article 1 week ago Share
      Details
      Last Updated Jul 30, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Communicating and Navigating with Missions Small Spacecraft Technology Program Space Communications Technology Technology Technology Transfer & Spinoffs View the full article
  • Check out these Videos

×
×
  • Create New...