Jump to content

Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline


Recommended Posts

  • Publishers
Posted
5 Min Read

Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline

On Feb. 20, 2024, Antarctic sea ice officially reached its minimum extent for the year. This cycle of growth and melting occurs every year, with the ice reaching its smallest size during the Southern Hemisphere's summer.
Credits: NASA's Scientific Visualization Studio/Trent L. Schindler

Sea ice at both the top and bottom of the planet continued its decline in 2024. In the waters around Antarctica, ice coverage shrank to near-historic lows for the third year in a row. The recurring loss hints at a long-term shift in conditions in the Southern Ocean, likely resulting from global climate change, according to scientists at NASA and the National Snow and Ice Data Center. Meanwhile, the 46-year trend of shrinking and thinning ice in the Arctic Ocean shows no sign of reversing.

“Sea ice acts like a buffer between the ocean and the atmosphere,” said ice scientist Linette Boisvert of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Sea ice prevents much of the exchange of heat and moisture from the relatively warm ocean to the atmosphere above it.”

Less ice coverage allows the ocean to warm the atmosphere over the poles, leading to more ice melting in a vicious cycle of rising temperatures.

Historically, the area of sea ice surrounding the Antarctic continent has fluctuated dramatically from year to year while averages over decades have been relatively stable. In recent years, though, sea ice cover around Antarctica has plummeted.

On Feb. 20, 2024, Antarctic sea ice officially reached its minimum extent for the year. This cycle of growth and melting occurs every year, with the ice reaching its smallest size during the Southern Hemisphere’s summer. According to the National Snow and Ice Data Center, this marks the second-lowest sea ice extent recorded by satellites, reflecting a trend of declining coverage over time.
Credit: NASA’s Goddard Space Flight Center/Scientific Visualization Studio
Download this video in HD formats from https://svs.gsfc.nasa.gov/14538.

“In 2016, we saw what some people are calling a regime shift,” said sea ice scientist Walt Meier of the National Snow and Ice Data Center at the University of Colorado, Boulder. “The Antarctic sea ice coverage dropped and has largely remained lower than normal. Over the past seven years, we’ve had three record lows.”

This year, Antarctic sea ice reached its lowest annual extent on Feb. 20 with a total of 768,000 square miles (1.99 million square kilometers). That’s 30% below the 1981 to 2010 end-of-summer average. The difference in ice cover spans an area about the size of Texas. Sea ice extent is defined as the total area of the ocean in which the ice cover fraction is at least 15%.

This year’s minimum is tied with February 2022 for the second lowest ice coverage around the Antarctic and close to the 2023 all-time low of 691,000 square miles (1.79 million square kilometers). With the latest ice retreat, this year marks the lowest three-year average for ice coverage observed around the Antarctic continent across more than four decades.

The changes were observed in data collected with microwave sensors aboard the Nimbus-7 satellite, jointly operated by NASA and the National Oceanic and Atmospheric Administration (NOAA), along with satellites in the Defense Meteorological Satellite Program.

Meanwhile, at the other end of the planet, the maximum winter ice coverage in the Arctic Ocean is consistent with an ongoing 46-year decline. Satellite images reveal that the total area of the Arctic Ocean covered in sea ice reached 6 million square miles (15.65 million square kilometers) on March 14. That’s 247,000 square miles (640,000 square kilometers) less ice than the average between 1981 and 2010. Overall, the maximum winter ice coverage in the Arctic has shrunk by an area equivalent to the size of Alaska since 1979.

This year’s Arctic ice maximum is the 14th lowest on record. Complex weather patterns make it difficult to predict what will happen in any given year.

An illustrated graph depicting the annual fluctuation of ice in the Arctic. The x-axis shows January through December while the y-axis starts at 2 and goes up to 16 by 2's, depicting the millions of square kilometers. Several lines go across the graph in blue, red, orange, and pink colors. The lines are dotted and dashedd or show a larger area. The lines move closely together in a wave-like motion starting from the top left of the graph and moving to the right. The lines peak in March and reach a minimum in September.
The Arctic Ocean sea ice reached its annual maximum on March 14, continuing the long-term decline in ice at the poles.
Chart by Lauren Dauphin/NASA Earth Observatory, using data from the National Snow and Ice Data Center.

Shrinking ice makes Earth more susceptible to solar heating. “The sea ice and the snow on top of it are very reflective,” Boisvert said. “In the summer, if we have more sea ice, it reflects the Sun’s radiation and helps keep the planet cooler.”

On the other hand, the exposed ocean is darker and readily absorbs solar radiation, capturing and retaining that energy and ultimately contributing to warming in the planet’s oceans and atmosphere. 

Sea ice around the poles is more susceptible to the weather than it was a dozen years ago. Ice thickness measurements collected with laser altimeters aboard NASA’s ICESat-2 satellite show that less ice has managed to stick around through the warmer months. This means new ice must form from scratch each year, rather than building on old ice to make thicker layers. Thinner ice, in turn, is more prone to melting than multi-year accumulations.

“The thought is that in a couple of decades, we’re going to have these essentially ice-free summers,” Boisvert said, with ice coverage reduced below 400,000 square miles (1 million square kilometers) and most of the Arctic Ocean exposed to the Sun’s warming glare.

It’s too soon to know whether recent sea ice lows at the South Pole point to a long-term change rather than a statistical fluctuation, but Meier believes long term declines are inevitable.

“It’s only a matter of time,” he said. “After six, seven, eight years, it’s starting to look like maybe it’s happening. It’s just a question of whether there’s enough data to say for sure.”

By James Riordon
NASA’s Earth Science News Team

Media contact: Elizabeth Vlock
NASA Headquarters

Share

Details

Last Updated
Mar 25, 2024
Editor
Goddard Digital Team
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s James Webb Space Telescope recently imaged the Sombrero Galaxy with its NIRCam (Near-Infrared Camera), which shows dust from the galaxy’s outer ring blocking stellar light from stars within the galaxy. In the central region of the galaxy, the roughly 2,000 globular clusters, or collections of hundreds of thousands of old stars held together by gravity, glow in the near-infrared. The Sombrero Galaxy is around 30 million light-years from Earth in the constellation Virgo. From Earth, we see this galaxy nearly “edge-on,” or from the side.NASA, ESA, CSA, STScI After capturing an image of the iconic Sombrero galaxy at mid-infrared wavelengths in late 2024, NASA’s James Webb Space Telescope has now followed up with an observation in the near-infrared. In the newest image, released on June 3, 2025, the Sombrero galaxy’s tightly packed group of stars at the galaxy’s center is illuminated while the dust in the outer edges of the disk blocks some stellar light. Studying galaxies like the Sombrero at different wavelengths, including the near-infrared and mid-infrared with Webb, as well as the visible with NASA’s Hubble Space Telescope, helps astronomers understand how this complex system of stars, dust, and gas formed and evolved, along with the interplay of that material.
      Learn more about the Sombrero galaxy and what this new view can tell us.
      Image credit:  NASA, ESA, CSA, STScI
      View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope image features the remote galaxy HerS 020941.1+001557, which appears as a red arc that partially encircles a foreground elliptical galaxy.ESA/Hubble & NASA, H. Nayyeri, L. Marchetti, J. Lowenthal This NASA/ESA Hubble Space Telescope image offers us the chance to see a distant galaxy now some 19.5 billion light-years from Earth (but appearing as it did around 11 billion years ago, when the galaxy was 5.5 billion light-years away and began its trek to us through expanding space). Known as HerS 020941.1+001557, this remote galaxy appears as a red arc partially encircling a foreground elliptical galaxy located some 2.7 billion light-years away. Called SDSS J020941.27+001558.4, the elliptical galaxy appears as a bright dot at the center of the image with a broad haze of stars outward from its core. A third galaxy, called SDSS J020941.23+001600.7, seems to be intersecting part of the curving, red crescent of light created by the distant galaxy.
      The alignment of this trio of galaxies creates a type of gravitational lens called an Einstein ring. Gravitational lenses occur when light from a very distant object bends (or is ‘lensed’) around a massive (or ‘lensing’) object located between us and the distant lensed galaxy. When the lensed object and the lensing object align, they create an Einstein ring. Einstein rings can appear as a full or partial circle of light around the foreground lensing object, depending on how precise the alignment is. The effects of this phenomenon are much too subtle to see on a local level but can become clearly observable when dealing with curvatures of light on enormous, astronomical scales.
      Gravitational lenses not only bend and distort light from distant objects but magnify it as well. Here we see light from a distant galaxy following the curve of spacetime created by the elliptical galaxy’s mass. As the distant galaxy’s light passes through the gravitational lens, it is magnified and bent into a partial ring around the foreground galaxy, creating a distinctive Einstein ring shape.
      The partial Einstein ring in this image is not only beautiful, but noteworthy. A citizen scientist identified this Einstein ring as part of the SPACE WARPS project that asked citizen scientists to search for gravitational lenses in images.
      Text Credit: ESA/Hubble
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Images Galaxies Near and Far
      This NASA/ESA Hubble Space Telescope image features the remote galaxy HerS 020941.1+001557, which appears as a red arc that partially encircles a foreground elliptical galaxy. ESA/Hubble & NASA, H. Nayyeri, L. Marchetti, J. Lowenthal This NASA/ESA Hubble Space Telescope image offers us the chance to see a distant galaxy now some 19.5 billion light-years from Earth (but appearing as it did around 11 billion years ago, when the galaxy was 5.5 billion light-years away and began its trek to us through expanding space). Known as HerS 020941.1+001557, this remote galaxy appears as a red arc partially encircling a foreground elliptical galaxy located some 2.7 billion light-years away. Called SDSS J020941.27+001558.4, the elliptical galaxy appears as a bright dot at the center of the image with a broad haze of stars outward from its core. A third galaxy, called SDSS J020941.23+001600.7, seems to be intersecting part of the curving, red crescent of light created by the distant galaxy.
      The alignment of this trio of galaxies creates a type of gravitational lens called an Einstein ring. Gravitational lenses occur when light from a very distant object bends (or is ‘lensed’) around a massive (or ‘lensing’) object located between us and the distant lensed galaxy. When the lensed object and the lensing object align, they create an Einstein ring. Einstein rings can appear as a full or partial circle of light around the foreground lensing object, depending on how precise the alignment is. The effects of this phenomenon are much too subtle to see on a local level but can become clearly observable when dealing with curvatures of light on enormous, astronomical scales.
      Gravitational lenses not only bend and distort light from distant objects but magnify it as well. Here we see light from a distant galaxy following the curve of spacetime created by the elliptical galaxy’s mass. As the distant galaxy’s light passes through the gravitational lens, it is magnified and bent into a partial ring around the foreground galaxy, creating a distinctive Einstein ring shape.
      The partial Einstein ring in this image is not only beautiful, but noteworthy. A citizen scientist identified this Einstein ring as part of the SPACE WARPS project that asked citizen scientists to search for gravitational lenses in images.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 20, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Gravitational Lensing Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Gravitational Lenses



      Focusing in on Gravitational Lenses



      Hubble’s Night Sky Challenge


      View the full article
    • By European Space Agency
      Thanks largely to Copernicus Sentinel-1, scientists have discovered that a glacier in Antarctica is rapidly siphoning ice from neighbouring flows – at a pace never before seen. Until now, researchers believed that this process of ‘ice piracy’ in Antarctica took hundreds or even thousands of years, but these latest findings clearly demonstrate that this isn’t always the case.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Syncom Space Services employees Kenneth Shipman, left, and Jesse Yarbrough perform final tubing install in early March to prepare the interstage simulator gas system on the Thad Cochran Test Stand at NASA’s Stennis Space Center for leak checks. Leak checks were performed prior to activation of the gas system this month. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Syncom Space Services employees Branson Cuevas, left, Kenneth Shipman, and Jesse Yarbrough install final tubing in early March before activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Crews at NASA’s Stennis Space Center recently completed activation of interstage gas systems needed for testing a new SLS (Space Launch System) rocket stage to fly on future Artemis missions to the Moon and beyond.
      The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand. For Green Run, teams will activate and test all systems to ensure the stage is ready to fly. Green Run will culminate with a hot fire of the stage’s four RL10 engines, just as during an actual mission.
      The interstage simulator component will function like the SLS interstage section that protects the upper stage during Artemis launches. The interstage simulator will do the same during Green Run testing of the stage at NASA Stennis.
      The interstage simulator gas system will provide helium, nitrogen, and hydrogen to the four RL10 engines for all wet dress and hot fire exercises and tests.
      During the activation process, NASA Stennis crews simulated the engines and flowed gases to mirror various conditions and collect data on pressures and temperatures. NASA Stennis teams conducted 80 different flow cases, calculating such items as flow rates, system pressure drop, and fill/vent times. The calculated parameters then were compared to models and analytics to certify the gas system meets performance requirements.
      NASA engineers Chad Tournillon, left, and Robert Smith verify the functionality of the control system in early March for activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Members of the engineering and operations team review data as it is collected in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. Pictured are NASA’s Mark Robinson, Robert Simmers, Jack Conley, and Nick Nugent. Activation of the gas systems marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin NASA engineers Pablo Gomez, left, and B.T. Wigley collect data in early March during activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the NASA Stennis stand.NASA/Danny Nowlin Syncom Space Services employees Brandon Fleming, Robert Sheaffer, and Logan Upton review paperwork in early March prior to activation of the interstage simulator gas systems on the Thad Cochran Test Stand at NASA’s Stennis Space Center. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the stand.NASA/Danny Nowlin Syncom Space Services engineering tech Brandon Fleming tightens a pressure transducer on the Thad Cochran Test Stand at NASA’s Stennis Space Center in early March. Various transducers were used to provide data during subsequent activation of the interstage simulator gas systems at the stand. The activation marks a milestone in preparation for future Green Run testing of NASA’s exploration upper stage (EUS) in the B-2 position of the Thad Cochran Test Stand.NASA/Danny Nowlin Crews now will work to activate the umbilical gases and liquid oxygen systems. The NASA Stennis team will then conduct water system activation, where it will flow the flame deflector, aspirator, diffuser cooling circuits, purge rings and water-cooled fairing.
      Afterward, the team will deploy the FireX system to check for total coverage, expected to be completed in the summer. 
      Before the exploration upper stage, built by Boeing at NASA’s Michoud Assembly Facility in New Orleans, arrives at NASA Stennis, crews will perform a final 24-hour check, or stress test, across all test complex facilities to demonstrate readiness for the test series.
      Explore More
      3 min read Lagniappe for April 2025
      Article 3 weeks ago 4 min read Lagniappe for March 2025
      Article 2 months ago 6 min read NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
      Article 2 months ago View the full article
  • Check out these Videos

×
×
  • Create New...