Jump to content

45 Years Ago: Space Shuttle Columbia Arrives at NASA’s Kennedy Space Center


Recommended Posts

  • Publishers
Posted

On March 24, 1979, space shuttle Columbia arrived at NASA’s Kennedy Space Center (KSC) for the very first time. Following Presidential direction to build the space shuttle in 1972, Congress quickly approved and funded the program later that year. Construction of the first orbital vehicle, later named Columbia, began in 1975. Four years later, Columbia completed its first transcontinental flight, arriving at KSC to begin preparations for its first mission. The first shuttle flight in April 1981 ushered in an era of reusable space transportation.

NASA Administrator James C. Fletcher, left, presents a model of the space shuttle to President Richard M. Nixon in January 1972 Apollo 16 astronauts John W. Young, left, and Charles M. Duke on the Moon in April 1972
Left: NASA Administrator James C. Fletcher, left, presents a model of the space shuttle to President Richard M. Nixon in January 1972. Right: Apollo 16 astronauts John W. Young, left, and Charles M. Duke on the Moon in April 1972.

On Jan. 5, 1972, President Richard M. Nixon directed NASA to build the space shuttle, formally called the Space Transportation System (STS), stating that “it would revolutionize transportation into near space.” NASA Administrator James C. Fletcher hailed the President’s decision as “an historic step in the nation’s space program,” adding that it would change what humans can accomplish in space. Apollo 16 astronauts John W. Young and Charles M. Duke learned of the space shuttle’s approval while exploring the Moon in April 1972. Mission Control informed them that Congress had authorized the development of the space shuttle. Young and Duke both enthusiastically responded to the positive news with “Beautiful! Wonderful! Beautiful!” Young added with some foresight, “The country needs that shuttle mighty bad. You’ll see.” He had no way of knowing that nine years later, he would command the first ship of the space shuttle fleet, Columbia, on its maiden voyage.

Space Shuttle Columbia’s crew compartment during assembly in 1976 Columbia’s aft fuselage and wings during assembly in November 1977 Space Shuttle Columbia just prior to rollout from Rockwell’s plant in Palmdale in March 1979
Left: Columbia’s crew compartment during assembly in 1976. Middle: Columbia’s aft fuselage and wings during assembly in November 1977. Right: Columbia just prior to rollout from Rockwell’s plant in Palmdale in March 1979.

Once Congress authorized the funds, on July 26, 1972, NASA awarded the contract to the North American Rockwell Corporation of Downey, California, to begin construction of the first orbital vehicle. Officially known as Orbital Vehicle-102 (OV-102), in January 1979 NASA named it Columbia after Captain Robert Gary’s sloop that explored the Pacific Northwest in the 1790s and took the honor as the first American ship to circumnavigate the globe, as well as after the Apollo 11 Command Module. Construction of Columbia’s first components at Rockwell’s Palmdale, California, plant began on March 25, 1975.

Workers roll Columbia out from its hangar at Rockwell’s Palmdale, California, plant Workers transport Columbia from Rockwell’s Palmdale facility to NASA’s Dryden, now Armstrong, Flight Research Center Columbia atop the Shuttle Carrier Aircraft takes off from Dryden to begin the cross-country ferry flight
Left: Workers roll Columbia out from its hangar at Rockwell’s Palmdale, California, plant. Middle: Workers transport Columbia from Rockwell’s Palmdale facility to NASA’s Dryden, now Armstrong, Flight Research Center. Right: Columbia atop the Shuttle Carrier Aircraft takes off from Dryden to begin the cross-country ferry flight. 

Nearly four years later, on March 8, 1979, Columbia rolled out of the Palmdale facility to begin its multi-day transcontinental journey to KSC. For the first step of the journey, workers towed Columbia from Palmdale overland to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base (AFB) 36 miles away. Two days later, workers there hoisted Columbia onto the Shuttle Carrier Aircraft (SCA), a Boeing 747 aircraft modified to transport space shuttle orbiters. During a test flight, thousands of the orbiter’s thermal protection system tiles fell off. Workers returned Columbia to a hangar where over 100 men and women worked for nine days reapplying the tiles. Weather then delayed Columbia’s departure until March 20, when the SCA/shuttle duo flew from Dryden to Biggs AFB in El Paso, Texas.

Space shuttle Columbia atop its Shuttle Carrier Aircraft (SCA) touches down at Kelly Air Force Base (AFB) in San Antonio for an overnight stop Head on view of Space Shuttle Columbia atop the SCA Tina Aguilar, age nine, an aspiring young reporter, interviews astronaut Donald K. “Deke” Slayton in front of Columbia and the SCA at Kelly AFB
Left: Space shuttle Columbia atop its Shuttle Carrier Aircraft (SCA) touches down at Kelly Air Force Base (AFB) in San Antonio for an overnight stop. Middle: Head on view of Columbia atop the SCA. Right: Tina Aguilar, age nine, an aspiring young reporter, interviews astronaut Donald K. “Deke” Slayton in front of Columbia and the SCA at Kelly AFB.

Weather delayed Columbia’s departure for the planned refueling stop at Kelly AFB in San Antonio, until the next day. About 200,000 people went to view the shuttle during its overnight layover in San Antonio prior to its departure on March 23.

Space shuttle Columbia atop its Shuttle Carrier Aircraft (SCA) flies over the Saturn V display at NASA’s Kennedy Space Center (KSC) in Florida Columbia atop the SCA touches down at KSC’s Shuttle Landing Facility (SLF), with the Vehicle Assembly Building visible in the background At the SLF, NASA Administrator Robert A. Frosch addresses the crowd assembled to welcome Columbia to KSC, as other dignitaries listen
Left: The past meets the future, as space shuttle Columbia atop its Shuttle Carrier Aircraft (SCA) flies over the Saturn V display at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Columbia atop the SCA touches down at KSC’s Shuttle Landing Facility (SLF), with the Vehicle Assembly Building visible in the background. Right: At the SLF, NASA Administrator Robert A. Frosch addresses the crowd assembled to welcome Columbia to KSC, as other dignitaries listen.

After another overnight stop at Eglin AFB in Florida, Columbia atop the SCA touched down at KSC’s Shuttle Landing Facility (SLF) on March 24, a crowd of about 3,000 cheering its arrival. Dignitaries in attendance at a brief welcoming ceremony at the SLF included NASA Administrator Robert A. Frosch, KSC Director Lee R. Scherer, SCA pilots Joseph S. Algranti and Fitzhugh L. Fulton, program manager for Shuttle Flight Test Operations NASA astronaut Donald K. “Deke” Slayton, and astronauts John W. Young and Robert L. Crippen, designated as the commander and pilot for STS-1, the first space shuttle mission. Also in attendance, U.S. Congressman C. William “Bill” Nelson whose district included KSC and now serves as NASA’s 14th administrator, and Florida Lieutenant Governor J. Wayne Mixson.

Columbia in the Orbiter Processing Facility at NASA’s Kennedy Space Center (KSC) in Florida Workers hoist Columbia in KSC’s Vehicle Assembly Building (VAB) for mating with its external tank and solid rocket boosters Space Shuttle Columbia rolls out of the VAB on its way to Launch Pad 39A
Left: Columbia in the Orbiter Processing Facility at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers hoist Columbia in KSC’s Vehicle Assembly Building (VAB) for mating with its external tank and solid rocket boosters. Right: Columbia rolls out of the VAB on its way to Launch Pad 39A.

The next day, after removing Columbia from the back of the SCA, workers towed it into the Orbiter Processing Facility, where the orbiter spent the next 19 months preparing for its first flight. Rollover to the Vehicle Assembly Building (VAB) for mating with its External Tank and the two Solid Rocket Boosters took place Nov. 24, 1980. After a series of integrated tests, the shuttle stack rolled out of the VAB and made the 3.5-mile trip to Launch Pad 39A on Dec. 29, 1980. Young and Crippen flew Columbia’s historic first mission, STS-1, in April 1981, ushering in an era of reusable space transportation.

Share

Details

Last Updated
Mar 21, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Prelaunch News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA/Jonny Kim NASA astronaut Zena Cardman processes bone cell samples inside the Kibo laboratory module’s Life Science Glovebox on Aug. 28, 2025, as part of an experiment that tests how microgravity affects bone-forming and bone-degrading cells and explore potential ways to prevent bone loss. This research could help protect astronauts on future long-duration missions to the Moon and Mars, while also advancing treatments for millions of people on Earth who suffer from osteoporosis.
      Image credit: NASA/Jonny Kim
      View the full article
    • By NASA
      6 min read
      NASA’s IMAP Mission to Study Boundaries of Our Home in Space
      Summary
      NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, will launch no earlier than Tuesday, Sept. 23 to study the heliosphere, a giant shield created by the Sun. The mission will chart the heliosphere’s boundaries to help us better understand the protection it offers life on Earth and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of the solar wind, data that can be used to improve models predicting the impacts of space weather ranging from power-line disruptions to loss of satellites, to the health of voyaging astronauts. Space is a dangerous place — one that NASA continues to explore for the benefit of all. It’s filled with radiation and high-energy particles that can damage DNA and circuit boards alike. Yet life endures in our solar system in part because of the heliosphere, a giant bubble created by the Sun that extends far beyond Neptune’s orbit.
      With NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, launching no earlier than Tuesday, Sept. 23, humanity is set to get a better look at the heliosphere than ever before. The mission will chart the boundaries of the heliosphere to help us better understand the protection it offers and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of space weather conditions essential for the Artemis campaign and deep space travel. 
      “With IMAP, we’ll push forward the boundaries of knowledge and understanding of our place not only in the solar system, but our place in the galaxy as a whole,” said Patrick Koehn, IMAP program scientist at NASA Headquarters in Washington. “As humanity expands and explores beyond Earth, missions like IMAP will add new pieces of the space weather puzzle that fills the space between Parker Solar Probe at the Sun and the Voyagers beyond the heliopause.”
      Download this video from NASA’s Scientific Visualization Studio.
      Domain of Sun
      The heliosphere is created by the constant outflow of material and magnetic fields from the Sun called the solar wind. As the solar system moves through the Milky Way, the solar wind’s interaction with interstellar material carves out the bubble of the heliosphere. Studying the heliosphere helps scientists understand our home in space and how it came to be habitable.
      As a modern-day celestial cartographer, IMAP will map the boundary of our heliosphere and study how the heliosphere interacts with the local galactic neighborhood beyond. It will chart the vast range of particles, dust, ultraviolet light, and magnetic fields in interplanetary space, to investigate the energization of charged particles from the Sun and their interaction with interstellar space.
      The IMAP mission builds on NASA’s Voyager and IBEX (Interstellar Boundary Explorer) missions. In 2012 and 2018, the twin Voyager spacecraft became the first human-made objects to cross the heliosphere’s boundary and send back measurements from interstellar space. It gave scientists a snapshot of what the boundary looked like and where it was in two specific locations. While IBEX has been mapping the heliosphere, it has left many questions unanswered. With 30 times higher resolution and faster imaging, IMAP will help fill in the unknowns about the heliosphere.
      Energetic neutral atoms: atomic messengers from our heliosphere’s edge
      Of IMAP’s 10 instruments, three will investigate the boundaries of the heliosphere by collecting energetic neutral atoms, or ENAs. Many ENAs originate as positively charged particles released by the Sun but after racing across the solar system, these particles run into particles in interstellar space. In this collision, some of those positively charged particles become neutral, and an energetic neutral atom is born. The interaction also redirects the new ENAs, and some ricochet back toward the Sun.
      Charged particles are forced to follow magnetic field lines, but ENAs travel in a straight line, unaffected by the twists, turns, and turbulences in the magnetic fields that permeate space and shape the boundary of the heliosphere. This means scientists can track where these atomic messengers came from and study distant regions of space from afar. The IMAP mission will use the ENAs it collects near Earth to trace back their origins and construct maps of the boundaries of the heliosphere, which would otherwise be invisible from such a distance.
      “With its comprehensive state-of-the-art suite of instruments, IMAP will advance our understanding of two fundamental questions of how particles are energized and transported throughout the heliosphere and how the heliosphere itself interacts with our galaxy,” said Shri Kanekal, IMAP mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The IMAP mission will study the heliosphere, our home in space. NASA/Princeton University/Patrick McPike Space weather: monitoring solar wind
      The IMAP mission will also support near real-time observations of the solar wind and energetic solar particles, which can produce hazardous conditions in the space environment near Earth. From its location at Lagrange Point 1, about 1 million miles from Earth toward the Sun, IMAP will provide around a half hour’s warning of dangerous particles headed toward our planet. The mission’s data will help with the development of models that can predict the impacts of space weather ranging from power-line disruptions to loss of satellites.
      “The IMAP mission will provide very important information for deep space travel, where astronauts will be directly exposed to the dangers of the solar wind,” said David McComas, IMAP principal investigator at Princeton University.
      Cosmic dust: hints of the galaxy beyond
      In addition to measuring ENAs and solar wind particles, IMAP will also make direct measurements of interstellar dust — clumps of particles originating outside of the solar system that are smaller than a grain of sand. This space dust is largely composed of rocky or carbon-rich grains leftover from the aftermath of supernova explosions. 
      The specific elemental composition of this space dust is a postmark for where it comes from in the galaxy. Studying cosmic dust can provide insight into the compositions of stars from far outside our solar system. It will also help scientists significantly advance what we know about these basic cosmic building materials and provide information on what the material between stars is made of.
      David McComas leads the mission with an international team of 27 partner institutions. APL is managing the development phase and building the spacecraft, and it will operate the mission. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio. The Explorers and Heliophysics Projects Division at NASA Goddard manages the STP Program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate. NASA’s Launch Services Program, based at NASA’s Kennedy Space Center in Florida, manages the launch service for the mission.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 17, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division IMAP (Interstellar Mapping and Acceleration Probe) Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Explore More
      4 min read NASA Interns Apply NASA data to Real-World Problems to Advance Space Research and Aerospace Innovation


      Article


      2 hours ago
      3 min read Regions on Asteroid Explored by NASA’s Lucy Mission Get Official Names
      The IAU (International Astronomical Union), a global naming authority for celestial objects, has approved official…


      Article


      1 day ago
      5 min read Connecting Educators with NASA Data: Learning Ecosystems Northeast in Action


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Three New Missions Launch to Track Space Weather
  • Check out these Videos

×
×
  • Create New...