Members Can Post Anonymously On This Site
Mentoring the Next Generation of Engineers and Improving Shock Testing Standards
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Cloud cover can keep optical instruments on satellites from clearly capturing Earth’s surface. Still in testing, JPL’s Dynamic Targeting uses AI to avoid imaging clouds, yielding a higher proportion of usable data, and to focus on phenomena like this 2015 volcanic eruption in Indonesia Landsat 8 captured.NASA/USGS A technology called Dynamic Targeting could enable spacecraft to decide, autonomously and within seconds, where to best make science observations from orbit.
In a recent test, NASA showed how artificial intelligence-based technology could help orbiting spacecraft provide more targeted and valuable science data. The technology enabled an Earth-observing satellite for the first time to look ahead along its orbital path, rapidly process and analyze imagery with onboard AI, and determine where to point an instrument. The whole process took less than 90 seconds, without any human involvement.
Called Dynamic Targeting, the concept has been in development for more than a decade at NASA’s Jet Propulsion Laboratory in Southern California. The first of a series of flight tests occurred aboard a commercial satellite in mid-July. The goal: to show the potential of Dynamic Targeting to enable orbiters to improve ground imaging by avoiding clouds and also to autonomously hunt for specific, short-lived phenomena like wildfires, volcanic eruptions, and rare storms.
This graphic shows how JPL’s Dynamic Targeting uses a lookahead sensor to see what’s on a satellite’s upcoming path. Onboard algorithms process the sensor’s data, identifying clouds to avoid and targets of interest for closer observation as the satellite passes overhead.NASA/JPL-Caltech “The idea is to make the spacecraft act more like a human: Instead of just seeing data, it’s thinking about what the data shows and how to respond,” says Steve Chien, a technical fellow in AI at JPL and principal investigator for the Dynamic Targeting project. “When a human sees a picture of trees burning, they understand it may indicate a forest fire, not just a collection of red and orange pixels. We’re trying to make the spacecraft have the ability to say, ‘That’s a fire,’ and then focus its sensors on the fire.”
Avoiding Clouds for Better Science
This first flight test for Dynamic Targeting wasn’t hunting specific phenomena like fires — that will come later. Instead, the point was avoiding an omnipresent phenomenon: clouds.
Most science instruments on orbiting spacecraft look down at whatever is beneath them. However, for Earth-observing satellites with optical sensors, clouds can get in the way as much as two-thirds of the time, blocking views of the surface. To overcome this, Dynamic Targeting looks 300 miles (500 kilometers) ahead and has the ability to distinguish between clouds and clear sky. If the scene is clear, the spacecraft images the surface when passing overhead. If it’s cloudy, the spacecraft cancels the imaging activity to save data storage for another target.
“If you can be smart about what you’re taking pictures of, then you only image the ground and skip the clouds. That way, you’re not storing, processing, and downloading all this imagery researchers really can’t use,” said Ben Smith of JPL, an associate with NASA’s Earth Science Technology Office, which funds the Dynamic Targeting work. “This technology will help scientists get a much higher proportion of usable data.”
How Dynamic Targeting Works
The testing is taking place on CogniSAT-6, a briefcase-size CubeSat that launched in March 2024. The satellite — designed, built, and operated by Open Cosmos — hosts a payload designed and developed by Ubotica featuring a commercially available AI processor. While working with Ubotica in 2022, Chien’s team conducted tests aboard the International Space Station running algorithms similar to those in Dynamic Targeting on the same type of processor. The results showed the combination could work for space-based remote sensing.
Since CogniSAT-6 lacks an imager dedicated to looking ahead, the spacecraft tilts forward 40 to 50 degrees to point its optical sensor, a camera that sees both visible and near-infrared light. Once look-ahead imagery has been acquired, Dynamic Targeting’s advanced algorithm, trained to identify clouds, analyzes it. Based on that analysis, the Dynamic Targeting planning software determines where to point the sensor for cloud-free views. Meanwhile, the satellite tilts back toward nadir (looking directly below the spacecraft) and snaps the planned imagery, capturing only the ground.
This all takes place in 60 to 90 seconds, depending on the original look-ahead angle, as the spacecraft speeds in low Earth orbit at nearly 17,000 mph (7.5 kilometers per second).
What’s Next
With the cloud-avoidance capability now proven, the next test will be hunting for storms and severe weather — essentially targeting clouds instead of avoiding them. Another test will be to search for thermal anomalies like wildfires and volcanic eruptions. The JPL team developed unique algorithms for each application.
“This initial deployment of Dynamic Targeting is a hugely important step,” Chien said. “The end goal is operational use on a science mission, making for a very agile instrument taking novel measurements.”
There are multiple visions for how that could happen — possibly even on spacecraft exploring the solar system. In fact, Chien and his JPL colleagues drew some inspiration for their Dynamic Targeting work from another project they had also worked on: using data from ESA’s (the European Space Agency’s) Rosetta orbiter to demonstrate the feasibility of autonomously detecting and imaging plumes emitted by comet 67P/Churyumov-Gerasimenko.
On Earth, adapting Dynamic Targeting for use with radar could allow scientists to study dangerous extreme winter weather events called deep convective ice storms, which are too rare and short-lived to closely observe with existing technologies. Specialized algorithms would identify these dense storm formations with a satellite’s look-ahead instrument. Then a powerful, focused radar would pivot to keep the ice clouds in view, “staring” at them as the spacecraft speeds by overhead and gathers a bounty of data over six to eight minutes.
Some ideas involve using Dynamic Targeting on multiple spacecraft: The results of onboard image analysis from a leading satellite could be rapidly communicated to a trailing satellite, which could be tasked with targeting specific phenomena. The data could even be fed to a constellation of dozens of orbiting spacecraft. Chien is leading a test of that concept, called Federated Autonomous MEasurement, beginning later this year.
How AI supports Mars rover science Autonomous robot fleet could measure ice shelf melt Ocean world robot swarm prototype gets a swim test News Media Contact
Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov
2025-094
Share
Details
Last Updated Jul 24, 2025 Related Terms
Earth Science Earth Science Technology Office Jet Propulsion Laboratory Explore More
5 min read NASA Shares How to Save Camera 370-Million-Miles Away Near Jupiter
Article 3 days ago 2 min read GLOBE-Trotting Science Lands in Chesapeake with NASA eClips
On June 16-17, 2025, 50 students at Camp Young in Chesapeake, Virginia traded their usual…
Article 3 days ago 6 min read 5 Things to Know About Powerful New U.S.-India Satellite, NISAR
Article 3 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
The journey to launch is picking up pace for Europe’s MetOp Second Generation weather satellite – which hosts the Copernicus Sentinel-5 as part of its instrument package. Specialists at Europe’s Spaceport in Kourou have completed the critical and hazardous task of fuelling the satellite, marking a major milestone in its final preparations for liftoff.
View the full article
-
By NASA
4 min read
NASA to Launch SNIFS, Sun’s Next Trailblazing Spectator
July will see the launch of the groundbreaking Solar EruptioN Integral Field Spectrograph mission, or SNIFS. Delivered to space via a Black Brant IX sounding rocket, SNIFS will explore the energy and dynamics of the chromosphere, one of the most complex regions of the Sun’s atmosphere. The SNIFS mission’s launch window at the White Sands Missile Range in New Mexico opens on Friday, July 18.
The chromosphere is located between the Sun’s visible surface, or photosphere, and its outer layer, the corona. The different layers of the Sun’s atmosphere have been researched at length, but many questions persist about the chromosphere. “There’s still a lot of unknowns,” said Phillip Chamberlin, a research scientist at the University of Colorado Boulder and principal investigator for the SNIFS mission.
The reddish chromosphere is visible on the Sun’s right edge in this view of the Aug. 21, 2017, total solar eclipse from Madras, Oregon.Credit: NASA/Nat Gopalswamy The chromosphere lies just below the corona, where powerful solar flares and massive coronal mass ejections are observed. These solar eruptions are the main drivers of space weather, the hazardous conditions in near-Earth space that threaten satellites and endanger astronauts. The SNIFS mission aims to learn more about how energy is converted and moves through the chromosphere, where it can ultimately power these massive explosions.
“To make sure the Earth is safe from space weather, we really would like to be able to model things,” said Vicki Herde, a doctoral graduate of CU Boulder who worked with Chamberlin to develop SNIFS.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This footage from NASA’s Solar Dynamics Observatory shows the Sun in the 304-angstrom band of extreme ultraviolet light, which primarily reveals light from the chromosphere. This video, captured on Feb. 22, 2024, shows a solar flare — as seen in the bright flash on the upper left.Credit: NASA/SDO The SNIFS mission is the first ever solar ultraviolet integral field spectrograph, an advanced technology combining an imager and a spectrograph. Imagers capture photos and videos, which are good for seeing the combined light from a large field of view all at once. Spectrographs dissect light into its various wavelengths, revealing which elements are present in the light source, their temperature, and how they’re moving — but only from a single location at a time.
The SNIFS mission combines these two technologies into one instrument.
“It’s the best of both worlds,” said Chamberlin. “You’re pushing the limit of what technology allows us to do.”
By focusing on specific wavelengths, known as spectral lines, the SNIFS mission will help scientists to learn about the chromosphere. These wavelengths include a spectral line of hydrogen that is the brightest line in the Sun’s ultraviolet (UV) spectrum, and two spectral lines from the elements silicon and oxygen. Together, data from these spectral lines will help reveal how the chromosphere connects with upper atmosphere by tracing how solar material and energy move through it.
The SNIFS mission will be carried into space by a sounding rocket. These rockets are effective tools for launching and carrying space experiments and offer a valuable opportunity for hands-on experience, particularly for students and early-career researchers.
(From left to right) Vicki Herde, Joseph Wallace, and Gabi Gonzalez, who worked on the SNIFS mission, stand with the sounding rocket containing the rocket payload at the White Sands Missile Range in New Mexico.Credit: courtesy of Phillip Chamberlin “You can really try some wild things,” Herde said. “It gives the opportunity to allow students to touch the hardware.”
Chamberlin emphasized how beneficial these types of missions can be for science and engineering students like Herde, or the next generation of space scientists, who “come with a lot of enthusiasm, a lot of new ideas, new techniques,” he said.
The entirety of the SNIFS mission will likely last up to 15 minutes. After launch, the sounding rocket is expected to take 90 seconds to make it to space and point toward the Sun, seven to eight minutes to perform the experiment on the chromosphere, and three to five minutes to return to Earth’s surface.
A previous sounding rocket launch from the White Sands Missile Range in New Mexico. This mission carried a copy of the Extreme Ultraviolet Variability Experiment (EVE).
Credit: NASA/University of Colorado Boulder, Laboratory for Atmospheric and Space Physics/James Mason The rocket will drift around 70 to 80 miles (112 to 128 kilometers) from the launchpad before its return, so mission contributors must ensure it will have a safe place to land. White Sands, a largely empty desert, is ideal.
Herde, who spent four years working on the rocket, expressed her immense excitement for the launch. “This has been my baby.”
By Harper Lawson
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Jul 17, 2025 Related Terms
Heliophysics Goddard Space Flight Center Heliophysics Division Science & Research Sounding Rockets Sounding Rockets Program Wallops Flight Facility Explore More
6 min read NASA’s TRACERS Studies Explosive Process in Earth’s Magnetic Shield
Article 1 day ago 3 min read NASA Citizen Science and Your Career: Stories of Exoplanet Watch Volunteers
Doing NASA Science brings many rewards. But can taking part in NASA citizen science help…
Article 1 day ago 4 min read NASA Research Shows Path Toward Protocells on Titan
Article 3 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 Min Read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
Better understanding the lunar lighting environment will help NASA prepare astronauts for the harsh environment Artemis III Moonwalkers will experience on their mission. NASA’s Artemis III mission will build on earlier test flights and add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
Using high-intensity lighting and low-fidelity mock-ups of a lunar lander, lunar surface, and lunar rocks, NASA engineers are simulating the Moon’s environment at the Flat Floor Facility to study and experience the extreme lighting condition. The facility is located at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
NASA engineers inside the Flat Floor Facility at Marshall Space Flight Center in Huntsville, Alabama, mimic lander inspection and assessment tasks future Artemis astronauts may do during Artemis III. Lights are positioned at a low angle to replicate the strong shadows that are cast across the lunar South Pole. NASA/Charles Beason “The goal is really to understand how shadows will affect lander visual inspection and assessment efforts throughout a future crewed mission,” said Emma Jaynes, test engineer at the facility. “Because the Flat Floor Facility is similar to an inverted air hockey table, NASA and our industry partners can rearrange large, heavy structures with ease – and inspect the shadows’ effects from multiple angles, helping to ensure mission success and astronaut safety for Artemis III.”
Data and analysis from testing at NASA are improving models Artemis astronauts will use in preparation for lander and surface operations on the Moon during Artemis III. The testing also is helping cross-agency teams evaluate various tools astronauts may use.
The 86-foot-long by 44-foot-wide facility at NASA is one of the largest, flattest, and most stable air-bearing floors in the world, allowing objects to move across the floor without friction on a cushion of air.
Test teams use large, 12-kilowatt and 6-kilowatt lights to replicate the low-angle, high contrast conditions of the lunar South Pole. Large swaths of fabric are placed on top of the epoxy floor to imitate the reflective properties of lunar regolith. All the mock-ups are placed on air bearings, allowing engineers to easily move and situate structures on the floor.
The Flat Floor Facility is an air-bearing floor, providing full-scale simulation capabilities for lunar surface systems by simulating zero gravity in two dimensions. Wearing low-fidelity materials, test engineers can understand how the extreme lighting of the Moon’s South Pole could affect surface operations during Artemis III. NASA/Charles Beason “The Sun is at a permanent low angle at the South Pole of the Moon, meaning astronauts will experience high contrasts between the lit and shadowed regions,” Jaynes said. “The color white can become blinding in direct sunlight, while the shadows behind a rock could stretch for feet and ones behind a lander could extend for miles.”
The laboratory is large enough for people to walk around and experience this phenomenon with the naked eye, adding insight to what NASA calls ‘human in-the-loop testing.
NASA is working with SpaceX to develop the company’s Starship Human Landing System to safely send Artemis astronauts to the Moon’s surface and back to lunar orbit for Artemis III.
Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
For more information about Artemis missions, visit:
https://www.nasa.gov/artemis
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Jun 17, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Human Landing System Program Artemis Artemis 3 General Humans in Space Marshall Space Flight Center Explore More
4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
Article 2 months ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
Article 7 months ago Keep Exploring Discover More Topics From NASA
Artemis III
Gateway Lunar Space Station
Built with international and industry partners, Gateway will be humanity’s first space station around the Moon. It will support a…
Space Launch System (SLS)
Humans In Space
View the full article
-
By NASA
4 Min Read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
And the winner is… the University of Utah in Salt Lake City. The Utah Student Robotics Club won the grand prize Artemis Award on May 22 for NASA’s 2025 Lunabotics Challenge held at The Astronauts Memorial Foundation’s Center for Space Education at the Kennedy Space Center Visitor Complex in Florida.
“Win was our motto for the whole year,” said Brycen Chaney, University of Utah, president of student robotics. “We had a mission objective to take our team and competition a step further, but win was right up front of our minds.”
Lunabotics is an annual challenge where students design and build an autonomous and remote-controlled robot to navigate the lunar surface in support of the Artemis campaign. The students from the University of Utah used their robot to excavate simulated regolith, the loose, fragmented material on the Moon’s surface, as well as built a berm. The students, who competed against 37 other teams, won grand prize for the first time during the Lunabotics Challenge.
“During the 16th annual Lunabotics University Challenge the teams continued to raise the bar on excavating, transporting, and depositing lunar regolith simulant with clever remotely controlled robots,” said Robert Mueller, senior technologist at NASA Kennedy for Advanced Products Development in the agency’s Exploration Research and Technology Programs Directorate, and lead judge and co-founder of the original Lunabotics robotic mining challenge. “New designs were revealed, and each team had a unique design and operations approach.”
Students from University of Illinois Chicago receive first place for the Robotic Construction Award during the 2025 Lunabotics Challenge.NASA/Isaac Watson Other teams were recognized for their achievements: The University of Illinois Chicago placed first for the Robotic Construction Award. “It’s a total team effort that made this work,” said Elijah Wilkinson, senior and team captain at the University of Illinois Chicago. “Our team has worked long and hard on this. We have people who designed the robot, people who programmed the robot, people who wrote papers, people who wired the robot; teamwork is really what made it happen.”
The University of Utah won second and the University of Alabama in Tuscaloosa came in third place, respectively. The award recognizes the teams that score the highest points during the berm-building operations in the Artemis Arena. Teams are evaluated based on their robot’s ability to construct berms using excavated regolith simulant, demonstrating effective lunar surface construction techniques.
To view the robots in action from the Robot Construction Award winners, please click on the following links: University of Illinois Chicago, University of Utah, University of Alabama in Tuscaloosa.
Students from Purdue University in Lafayette, Indiana received the Caterpillar Autonomy Award during the 2025 Lunabotics Challenge.
NASA/Isaac Watson Students from Purdue University in Lafayette, Indiana received the Caterpillar Autonomy Award for their work. The University of Alabama placed second, followed by the University of Akron in Ohio. This award honors teams that successfully complete competition activities autonomously. It emphasizes the development and implementation of autonomous control systems in lunar robotics, reflecting real-world applications in remote and automated operations.
An Artemis I flag flown during the Nov. 16, 2022, mission was presented to the University of Illinois Chicago, as well as the University of Virginia in Charlottesville as part of the Innovation Award. The recognition is given to teams for their original ideas, creating efficiency, effective results, and solving a problem.
Dr. Eric Meloche from the College of DuPage in Glen Ellyn, Illinois, and Jennifer Erickson, professor from the Colorado School of Mines in Golden each received an Artemis Educator Award, a recognition for educators, faculty, or mentors for their time and effort inspiring students.
The University of Utah received the Effective Use of Communications Power Award and the University of Virginia the agency’s Center for Lunar and Asteroid Surface Science Award.
Students from the Colorado School of Mines pose for a photo after receiving a Systems Engineering Award during the 2025 Lunabotics Competition.
NASA/Isaac Watson Students from the Colorado School of Mines placed first receiving a Systems Engineering Award. University of Virginia in Charlottesville and the College of DuPage in Glen Ellyn, Illinois, came in second and third places.
This is truly a win-win situation. The students get this amazing experience of designing, building, and testing their robots and then competing here at NASA in a lunar-like scenario while NASA gets the opportunity to study all of these different robot designs as they operate in simulated lunar soil. Lunabotics gives everyone involved new technical knowledge along with some pretty great experience.”
Kurt Leucht
Commentator, Lunabotics Competition and Software Development team lead
Below is a list of other awards given to students:
Systems Engineering Paper Award Nova Award: Liberty University in Lynchburg, Virginia; University of Virginia; College of DuPage Best Use of Systems Engineering Tools: The University of Utah Best Use of Reviews as Control Gates: The University of Alabama Systems Engineering Paper Award Leaps and Bounds Award: The University of Miami in Florida Best presentation award by a first year team: University of Buffalo in New York Presentations and demonstrations awards: University of Utah, Colorado School of Mines, University of Miami About the Author
Elyna Niles-Carnes
Share
Details
Last Updated Jun 03, 2025 Related Terms
Kennedy Space Center For Colleges & Universities Learning Resources NASA STEM Projects Next Gen STEM Partner with NASA STEM STEM Engagement at NASA STEM Impacts Explore More
4 min read Integrated Testing on Horizon for Artemis II Launch Preparations
Article 5 days ago 3 min read NASA Interns Conduct Aerospace Research in Microgravity
The NASA Science Activation program’s STEM (Science, Technology, Engineering, and Mathematics) Enhancement in Earth Science…
Article 7 days ago 5 min read Career Spotlight: Mathematician (Ages 14-18)
Article 1 week ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.