Jump to content

NASA’s Chandra Identifies an Underachieving Black Hole


Recommended Posts

  • Publishers
Posted
Quasar H1821+643.
Quasar H1821+643.
X-ray: NASA/CXC/Univ. of Nottingham/H. Russell et al.; Radio: NSF/NRAO/VLA; Image Processing: NASA/CXC/SAO/N. Wolk

This image shows a quasar, a rapidly growing supermassive black hole, which is not achieving what astronomers would expect from it, as reported in our latest press release. Data from NASA’s Chandra X-ray Observatory (blue) and radio data from the NSF’s Karl G. Jansky’s Very Large Array (red) reveal some of the evidence for this quasar’s disappointing impact on its host galaxy.

Known as H1821+643, this quasar is about 3.4 billion light-years from Earth. Quasars are a rare and extreme class of supermassive black holes that are furiously pulling material inwards, producing intense radiation and sometimes powerful jets. H1821+643 is the closest quasar to Earth in a cluster of galaxies.

Quasars are different than other supermassive black holes in the centers of galaxy clusters in that they are pulling in more material at a higher rate. Astronomers have found that non-quasar black holes growing at moderate rates influence their surroundings by preventing the intergalactic hot gas from cooling down too much. This regulates the growth of stars around the black hole.

The influence of quasars, however, is not as well known. This new study of H1821+643 that quasars — despite being so active — may be less important in driving the fate of their host galaxy and cluster than some scientists might expect.

To reach this conclusion the team used Chandra to study the hot gas that H1821+643 and its host galaxy are shrouded in. The bright X-rays from the quasar, however, made it difficult to study the weaker X-rays from the hot gas. The researchers carefully removed the X-ray glare to reveal what the black hole’s influence is, which is reflected in the new composite image showing X-rays from hot gas in the cluster surrounding the quasar. This allowed them to see that the quasar is actually having little effect on its surroundings.

Using Chandra, the team found that the density of gas near the black hole in the center of the galaxy is much higher, and the gas temperatures much lower, than in regions farther away. Scientists expect the hot gas to behave like this when there is little or no energy input (which would typically come from outbursts from a black hole) to prevent the hot gas from cooling down and flowing towards the center of the cluster.

A paper describing these results has been accepted into the Monthly Notices of the Royal Astronomical Society and is available online. The authors are Helen Russell (University of Nottingham, UK), Paul Nulsen (Center for Astrophysics | Harvard & Smithsonian), Andy Fabian (University of Cambridge, UK), Thomas Braben (University of Nottingham), Niel Brandt (Penn State University), Lucy Clews (University of Nottingham), Michael McDonald (Massachusetts Institute of Technology), Christopher Reynolds (University of Maryland), Jeremy Saunders (Max Planck Institute for Extraterrestrial Research), and Sylvain Veilleux (University of Maryland).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description:

This composite image shows a quasar, a rare and extreme class of supermassive black hole, that’s located about 3.4 billion light-years from Earth.

At the center of the image is a bright, white, circular light, similar to the beam of a flashlight if it was pointed directly toward you. A fuzzy, bar-shaped structure of red-colored radio light, slightly larger than the width of the white light, surrounds the circular structure. The red bar also extends above and below the white light, stretching in a somewhat straight line from about the one o’clock position to the seven o’clock position on a clock face.

On either side of the red bar, X-ray light is present as blue, wispy clouds of hot gas that are brighter closer to the red and white features. The brighter clouds represent more dense gas.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
      NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
      Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
      “Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
      All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
      Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
      Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
      Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
      For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
      The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
      Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
      “HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
      Frozen Water — Almost Everywhere
      Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
      The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
      This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
      The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Claire Blome – cblome@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
      Learn more about spectroscopy
      Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      What is a black hole?

      Well, the name is actually a little misleading because black holes aren’t actually holes. They’re regions in space that have a gravitational pull that is so strong that nothing can escape, not even light. Scientists know about two different sizes of black holes — stellar-mass black holes and supermassive black holes.

      A stellar-mass black hole is born when a massive star dies. That’s a star that’s larger than our own Sun. These stars burn up all the nuclear fuel in their cores, and this causes them to collapse under their own gravity. This collapse causes an explosion that we call a supernova. The entire mass of the star is collapsing down into a tiny point, and the area of the black hole is just a few kilometers across.

      Supermassive black holes can have a mass of millions to tens of billions of stars. Scientists believe that every galaxy in the universe contains a supermassive black hole. That’s up to one trillion galaxies in the universe. But we don’t know how these supermassive black holes form. And this is an area of active research.

      What we do know is that supermassive black holes are playing a really important part in the formation and evolution of galaxies, and into our understanding of our place in the universe.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated May 13, 2025 Related Terms
      General Explore More
      1 min read NASA Ames Stars of the Month: May 2025
      Article 1 day ago 3 min read NASA Earns Two Emmy Nominations for 2024 Total Solar Eclipse Coverage
      Article 5 days ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      8 Min Read NASA Telescopes Tune Into a Black Hole Prelude, Fugue
      The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. NASA released three new pieces of cosmic sound Thursday that are associated with the densest and darkest members of our universe: black holes. These scientific productions are sonifications — or translations into sound — of data collected by NASA telescopes in space including the Chandra X-ray Observatory, James Webb Space Telescope, and Imaging X-ray Polarimetry Explorer (IXPE).
      This trio of sonifications represents different aspects of black holes and black hole evolution. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet that may collapse into a black hole in the future. SS 433 is a binary, or double system, containing a star like our Sun in orbit with either a neutron star or a black hole. The galaxy Centaurus A has an enormous black hole in its center that is sending a booming jet across the entire length of the galaxy. Data from Chandra and other telescopes were translated through a process called “sonification” into sounds and notes. This new trio of sonifications represents different aspects of black holes. Black holes are neither static nor monolithic. They evolve over time, and are found in a range of sizes and environments.
      WR 124 
      Credit: X-ray: NASA/CXC/SAO; Infrared: (Herschel) ESA/NASA/Caltech, (Spitzer) NASA/JPL/Caltech, (WISE) NASA/JPL/Caltech; Infrared: NASA/ESA/CSA/STScI/Webb ERO Production Team; Image processing: NASA/CXC/SAO/J. Major; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) The first movement is a prelude to the potential birth of a black hole. WR124 is an extremely bright, short-lived massive star known as a Wolf-Rayet at a distance of about 28,000 light-years from Earth. These stars fling their outer layers out into space, creating spectacular arrangements seen in an image in infrared light from the Webb telescope. In the sonification of WR124, this nebula is heard as flutes and the background stars as bells. At the center of WR124, where the scan begins before moving outward, is a hot core of the star that may explode as a supernova and potentially collapse and leave behind a black hole in its wake. As the scan moves from the center outward, X-ray sources detected by Chandra are translated into harp sounds. Data from NASA’s James Webb Space Telescope is heard as metallic bell-like sounds, while the light of the central star is mapped to produce the descending scream-like sound at the beginning. The piece is rounded out by strings playing additional data from the infrared telescopic trio of ESA’s (European Space Agency’s) Herschel Space Telescope, NASA’s retired Spitzer Space Telescope, and NASA’s retired Wide Image Survey Explorer (WISE) as chords.
      SS 433
      Credit: X-ray: (IXPE): NASA/MSFC/IXPE; (Chandra): NASA/CXC/SAO; (XMM): ESA/XMM-Newton; IR: NASA/JPL/Caltech/WISE; Radio: NRAO/AUI/NSF/VLA/B. Saxton. (IR/Radio image created with data from M. Goss, et al.); Image Processing/compositing: NASA/CXC/SAO/N. Wolk & K. Arcand; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) In the second movement of this black hole composition, listeners can explore a duet. SS 433 is a binary, or double, system about 18,000 light-years away that sings out in X-rays. The two members of SS 433 include a star like our Sun in orbit around a much heavier partner, either a neutron star or a black hole. This orbital dance causes undulations in X-rays that Chandra, IXPE, and ESA’s XMM-Newton telescopes are tuned into. These X-ray notes have been combined with radio and infrared data to provide a backdrop for this celestial waltz. The nebula in radio waves resembles a drifting manatee, and the scan sweeps across from right to left. Light towards the top of the image is mapped to higher-pitch sound, with radio, infrared, and X-ray light mapped to low, medium, and high pitch ranges. Bright background stars are played as water-drop sounds, and the location of the binary system is heard as a plucked sound, pulsing to match the fluctuations due to the orbital dance.
      Centarus A
      Credit: X-ray: (Chandra) NASA/CXC/SAO, (IXPE) NASA/MSFC; Optical: ESO; Image Processing: NASA/CXC/SAO/K. Arcand, J. Major, and J. Schmidt; Sonification: NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) The third and final movement of the black hole-themed sonifications crescendos with a distant galaxy known as Centaurus A, about 12 million light-years away from Earth. At the center of Centaurus A is an enormous black hole that is sending a booming jet across the entire length of the galaxy. Sweeping around clockwise from the top of the image, the scan encounters Chandra’s X-rays and plays them as single-note wind chimes. X-ray light from IXPE is heard as a continuous range of frequencies, producing a wind-like sound. Visible light data from the European Southern Observatory’s MPG telescope shows the galaxy’s stars that are mapped to string instruments including foreground and background objects as plucked strings.
      For more NASA sonifications and information about the project, visit https://chandra.si.edu/sound/
      These sonifications were led by the Chandra X-ray Center (CXC), with support from NASA’s Marshall Space Flight Center and NASA’s Universe of Learning program, which is part of the NASA Science Activation program. The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida (both of the SYSTEM Sounds project), along with consultant Christine Malec.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and NASA’s Jet Propulsion Laboratory.
      The agency’s IXPE is a collaboration between NASA and the Italian Space Agency with partners and science collaborators in 12 countries. The IXPE mission is led by Marshall. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
      To learn more about NASA’s space telescopes, visit:
      https://science.nasa.gov/universe
      Read more from NASA’s Chandra X-ray Observatory Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features three sonifications related to black holes, presented as soundtracks to short videos. Each sonification video features a composite image representing a different aspect of the life of a black hole. These images are visualizations of data collected by NASA telescopes. During each video, a line sweeps through the image. When the line encounters a visual element, it is translated into sound according to parameters established by visualization scientist Kimberly Arcand, astrophysicist Matt Russo, musician Andrew Santaguida, and consultant Christine Malec.
      The first sonification features WR124, an extremely bright, massive star. Here, the star is shown in a short-lived phase preceding the possible creation of a black hole. At the center of the composite image is the large gleaming star in white and pale blue. The star sits at the heart of a mottled pink and gold cloud, its long diffraction spikes extending to the outer edges. Also residing in the cloud are other large gleaming stars, glowing hot-pink dots, and tiny specks of blue and white light. In this sonification, the sound activation line is an ever-expanding circle which starts in the center of the massive star and continues to grow until it exits the frame.
      The second sonification features SS 433, a binary star system at the center of a supernova remnant known as the Manatee Nebula. Visually, the translucent, blobby teal nebula does, indeed, resemble a bulbous walrus or manatee, floating in a red haze packed with distant specs of light. Inside the nebula is a violet streak, a blue streak, and a large bright dot. The dot, represented by a plucking sound in the sonification, is the binary system at the heart of the nebula. In this sonification, the vertical activation line begins at our right edge of the frame, and sweeps across the image before exiting at our left.
      The third and final sonification features Centaurus A, a distant galaxy with an enormous black hole emitting a long jet of high-energy particles. The black hole sits at the center of the composite image, represented by a brilliant white light. A dark, grainy, oblong cloud cuts diagonally across the black hole from our lower left toward our upper right. A large, faint, translucent blue cloud stretches from our upper left to our lower right. And the long, thin jet, also in translucent blue, extends from the black hole at the center toward the upper lefthand corner. In this sonification, the activation line rotates around the image like the hand of a clock. It begins at the twelve o’clock position, and sweeps clockwise around the image.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated May 08, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory Black Holes Galaxies, Stars, & Black Holes IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space…
      Article 2 hours ago 5 min read NASA’s IXPE Reveals X-ray-Generating Particles in Black Hole Jets
      Article 2 days ago 5 min read NASA’s NICER Maps Debris From Recurring Cosmic Crashes
      Lee esta nota de prensa en español aquí. For the first time, astronomers have probed…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Chandra X-ray Observatory
      Launched on July 23, 1999, it is the largest and most sophisticated X-ray observatory to date. NASA’s Chandra X-ray Observatory…
      Black Holes
      Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
      Universe
      IXPE
      View the full article
    • By NASA
      Explore Hubble Science Hubble Space Telescope NASA’s Hubble Pinpoints… Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities   7 Min Read NASA’s Hubble Pinpoints Roaming Massive Black Hole
      This six-panel illustration of a tidal disruption event around a supermassive black hole shows the collision with a star followed by an explosion detected in X-ray as well as Hubble Space Telescope visible-light observations. Credits:
      Artwork: NASA, ESA, STScI, Ralf Crawford (STScI) Like a scene out of a sci-fi movie, astronomers using NASA telescopes have found “Space Jaws.”
      Lurking 600 million light-years away, within the inky black depths between stars, there is an invisible monster gulping down any wayward star that plummets toward it. The sneaky black hole betrayed its presence in a newly identified tidal disruption event (TDE) where a hapless star was ripped apart and swallowed in a spectacular burst of radiation. These disruption events are powerful probes of black hole physics, revealing the conditions necessary for launching jets and winds when a black hole is in the midst of consuming a star, and are seen as bright objects by telescopes.
      The new TDE, called AT2024tvd, allowed astronomers to pinpoint a wandering supermassive black hole using NASA’s Hubble Space Telescope, with similar supporting observations from NASA’s Chandra X-Ray Observatory and the NRAO Very Large Array telescope that also showed that the black hole is offset from the center of the galaxy.
      The paper will be published in an upcoming issue of The Astrophysical Journal Letters.
      This six-panel illustration of a tidal disruption event around a supermassive black hole shows the following: 1) A supermassive black hole is adrift inside a galaxy, its presence only detectable by gravitational lensing; 2) A wayward star gets swept up in the black hole’s intense gravitational pull; 3) The star is stretched or “spaghettified” by gravitational tidal effects; 4) The star’s remnants form a disk around the black hole; 5) There is a period of black hole accretion, pouring out radiation across the electromagnetic spectrum, from X-rays to radio wavelengths; and 6) The host galaxy, seen from afar, contains a bright flash of energy that is offset from the galaxy’s nucleus, where an even more massive black hole dwells. Artwork: NASA, ESA, STScI, Ralf Crawford (STScI) Surprisingly, this one million-solar-mass black hole doesn’t reside exactly in the center of the host galaxy, where supermassive black holes are typically found, and actively gobble up surrounding material. Out of approximately 100 TDE events recorded by optical sky surveys so far, this is the first time an offset TDE has been identified. The rest are associated with the central black holes of galaxies.
      In fact, at the center of the host galaxy there is a different supermassive black hole weighing 100 million times the mass of the Sun. Hubble’s optical precision shows the TDE was only 2,600 light-years from the more massive black hole at the galaxy’s center. That’s just one-tenth the distance between our Sun and the Milky Way’s central supermassive black hole.
      This bigger black hole spews out energy as it accretes infalling gas, and it is categorized as an active galactic nucleus. Strangely, the two supermassive black holes co-exist in the same galaxy, but are not gravitationally bound to each other as a binary pair. The smaller black hole may eventually spiral into the galaxy’s center to merge with the bigger black hole. But for now, it is too far separated to be gravitationally bound.
      A TDE happens when an infalling star is stretched or “spaghettified” by a black hole’s immense gravitational tidal forces. The shredded stellar remnants are pulled into a circular orbit around the black hole. This generates shocks and outflows with high temperatures that can be seen in ultraviolet and visible light.
      “AT2024tvd is the first offset TDE captured by optical sky surveys, and it opens up the entire possibility of uncovering this elusive population of wandering black holes with future sky surveys,” said lead study author Yuhan Yao of the University of California at Berkeley. “Right now, theorists haven’t given much attention to offset TDEs. “I think this discovery will motivate scientists to look for more examples of this type of event.”
      This is a Hubble Space Telescope image of distant galaxy that is host to the telltale signature of a roaming supermassive black hole. Science: NASA, ESA, STScI, Yuhan Yao (UC Berkeley); Image Processing: Joseph DePasquale (STScI) A Flash in the Night
      The star-snacking black hole gave itself away when several ground-based sky survey telescopes observed a flare as bright as a supernova. But unlike a supernova, astronomers know that this came from a black hole snacking on a star because the flare was very hot, and showed broad emission lines of hydrogen, helium, carbon, nitrogen, and silicon. The Zwicky Transient Facility at Caltech’s Palomar Observatory, with its 1.2-meter telescope that surveys the entire northern sky every two days, first observed the event.
      “Tidal disruption events hold great promise for illuminating the presence of massive black holes that we would otherwise not be able to detect,” said Ryan Chornock, associate adjunct professor at UC Berkeley and a member of the ZTF team. “Theorists have predicted that a population of massive black holes located away from the centers of galaxies must exist, but now we can use TDEs to find them.”
      The flare was seemingly offset from the center of a bright massive galaxy as cataloged by  Pan-STARRS (Panoramic Survey Telescope and Rapid Response System), the Sloan Digital Sky Survey, and the DESI Legacy Imaging Survey. To better determine that it was not at the galactic center, Yao’s team used NASA’s Chandra X-ray Observatory to confirm that X-rays from the flare site were also offset.
      It took the resolving power of Hubble to settle any uncertainties. Hubble’s sensitivity to ultraviolet light also allows it to pinpoint the location of the TDE, which is much bluer than the rest of the galaxy.
      This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole. Both telescopes caught a tidal disruption event (TDE) caused by the black hole eating a star. Science: NASA, ESA, STScI, Yuhan Yao (UC Berkeley); Image Processing: Joseph DePasquale (STScI) Origin Unknown
      The black hole responsible for the TDE is prowling inside the bulge of the massive galaxy. The black hole only becomes apparent every few tens of thousands of years when it “burps” from capturing a star, and then it goes quiet again until its next meal comes along.
      How did the black hole get off-center? Previous theoretical studies have shown that black holes can be ejected out of the centers of galaxies because of three-body interactions, where the lowest-mass member gets kicked out. This may be the case here, given the stealthy black hole’s close proximity to the central black hole. “If the black hole went through a triple interaction with two other black holes in the galaxy’s core, it can still remain bound to the galaxy, orbiting around the central region,“ said Yao.
      An alternative explanation is that the black hole is the surviving remnant of a smaller galaxy that merged with the host galaxy more than 1 billion years ago. If that is the case, the black hole might eventually spiral in to merge with the central active black hole sometime in the very far future. So at present, astronomers don’t know if it’s coming or going.
      Erica Hammerstein, another UC Berkeley postdoctoral researcher, scrutinized the Hubble images as part of the study, but did not find any evidence of a past galaxy merger. But she explained, “There is already good evidence that galaxy mergers enhance TDE rates, but the presence of a second black hole in AT2024tvd’s host galaxy means that at some point in this galaxy’s past, a merger must have happened.”
      Specialized for different kinds of light, observatories like Hubble and Chandra work together to pinpoint and better understand fleeting events like these. Future telescopes that will also be optimized for capturing transient events like this one include the National Science Foundation’s Vera C. Rubin Observatory and NASA’s upcoming Nancy Grace Roman Space Telescope. They will provide more opportunities for follow-up Hubble observations to zero in on a transient’s exact location.
      Explore More:

      Monster Black Holes are Everywhere


      Hubble Focus: Black Holes – Into the Vortex e-Book


      Science Behind the Discoveries: Black Holes


      Hubble’s Universe Uncovered: Black Holes

      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      ZTF is a public-private partnership, with equal support from the ZTF Partnership and from the U.S. National Science Foundation.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      Six panel illustration of Black Hole TDE AT2024tvd
      This is a six-panel illustration of a tidal disruption event around a supermassive back hole.


      Black Hole TDE AT2024tvdu00a0
      This is a Hubble Space Telescope image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.


      Black Hole TDE AT2024tvd (Hubble + Chandra)
      This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.


      Black Hole TDE AT2024tvd Compass Image
      This is a combined Hubble Space Telescope/Chandra X-Ray Observatory image of a distant galaxy that is host to the telltale signature of a roaming supermassive black hole.


      Black Hole Tidal Disruption Event
      This is a video animation of a tidal disruption event (TDE), an intense flash of radiation caused by the supermassive black hole eating a star. The video begins by zooming into a galaxy located 600 million light-years away.




      Share








      Details
      Last Updated May 08, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center
      Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland

      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Black Holes Chandra X-Ray Observatory Galaxies Goddard Space Flight Center
      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Images



      Hubble News


      View the full article
    • By NASA
      What is a Black Hole? We Asked a NASA Expert
  • Check out these Videos

×
×
  • Create New...