Members Can Post Anonymously On This Site
Gaia unravels the ancient threads of the Milky Way
-
Similar Topics
-
By NASA
Explore Webb Science James Webb Space Telescope (JWST) NASA’s Webb Observes Immense… Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Webb Timeline Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Science Explainers Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Observes Immense Stellar Jet on Outskirts of Our Milky Way
Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars—the more massive the stellar engine driving the plasma, the larger the resulting jet. Full image shown below. Credits:
Image: NASA, ESA, CSA, STScI, Yu Cheng (NAOJ); Image Processing: Joseph DePasquale (STScI) A blowtorch of seething gasses erupting from a volcanically growing monster star has been captured by NASA’s James Webb Space Telescope. Stretching across 8 light-years, the length of the stellar eruption is approximately twice the distance between our Sun and the next nearest stars, the Alpha Centauri system. The size and strength of this particular stellar jet, located in a nebula known as Sharpless 2-284 (Sh2-284 for short), qualifies it as rare, say researchers.
Streaking across space at hundreds of thousands of miles per hour, the outflow resembles a double-bladed dueling lightsaber from the Star Wars films. The central protostar, weighing as much as ten of our Suns, is located 15,000 light-years away in the outer reaches of our galaxy.
The Webb discovery was serendipitous. “We didn’t really know there was a massive star with this kind of super-jet out there before the observation. Such a spectacular outflow of molecular hydrogen from a massive star is rare in other regions of our galaxy,” said lead author Yu Cheng of the National Astronomical Observatory of Japan.
Image A: Stellar Jet in Sh2-284 (NIRCam Image)
Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars—the more massive the stellar engine driving the plasma, the larger the resulting jet. Image: NASA, ESA, CSA, STScI, Yu Cheng (NAOJ); Image Processing: Joseph DePasquale (STScI) This unique class of stellar fireworks are highly collimated jets of plasma shooting out from newly forming stars. Such jetted outflows are a star’s spectacular “birth announcement” to the universe. Some of the infalling gas building up around the central star is blasted along the star’s spin axis, likely under the influence of magnetic fields.
Today, while hundreds of protostellar jets have been observed, these are mainly from low-mass stars. These spindle-like jets offer clues into the nature of newly forming stars. The energetics, narrowness, and evolutionary time scales of protostellar jets all serve to constrain models of the environment and physical properties of the young star powering the outflow.
“I was really surprised at the order, symmetry, and size of the jet when we first looked at it,” said co-author Jonathan Tan of the University of Virginia in Charlottesville and Chalmers University of Technology in Gothenburg, Sweden.
Its detection offers evidence that protostellar jets must scale up with the mass of the star powering them. The more massive the stellar engine propelling the plasma, the larger the gusher’s size.
The jet’s detailed filamentary structure, captured by Webb’s crisp resolution in infrared light, is evidence the jet is plowing into interstellar dust and gas. This creates separate knots, bow shocks, and linear chains.
The tips of the jet, lying in opposite directions, encapsulate the history of the star’s formation. “Originally the material was close into the star, but over 100,000 years the tips were propagating out, and then the stuff behind is a younger outflow,” said Tan.
Outlier
At nearly twice the distance from the galactic center as our Sun, the host proto-cluster that’s home to the voracious jet is on the periphery of our Milky Way galaxy.
Within the cluster, a few hundred stars are still forming. Being in the galactic hinterlands means the stars are deficient in heavier elements beyond hydrogen and helium. This is measured as metallicity, which gradually increases over cosmic time as each passing stellar generation expels end products of nuclear fusion through winds and supernovae. The low metallicity of Sh2-284 is a reflection of its relatively pristine nature, making it a local analog for the environments in the early universe that were also deficient in heavier elements.
“Massive stars, like the one found inside this cluster, have very important influences on the evolution of galaxies. Our discovery is shedding light on the formation mechanism of massive stars in low metallicity environments, so we can use this massive star as a laboratory to study what was going on in earlier cosmic history,” said Cheng.
Unrolling Stellar Tapestry
Stellar jets, which are powered by the gravitational energy released as a star grows in mass, encode the formation history of the protostar.
“Webb’s new images are telling us that the formation of massive stars in such environments could proceed via a relatively stable disk around the star that is expected in theoretical models of star formation known as core accretion,” said Tan. “Once we found a massive star launching these jets, we realized we could use the Webb observations to test theories of massive star formation. We developed new theoretical core accretion models that were fit to the data, to basically tell us what kind of star is in the center. These models imply that the star is about 10 times the mass of the Sun and is still growing and has been powering this outflow.”
For more than 30 years, astronomers have disagreed about how massive stars form. Some think a massive star requires a very chaotic process, called competitive accretion.
In the competitive accretion model, material falls in from many different directions so that the orientation of the disk changes over time. The outflow is launched perpendicularly, above and below the disk, and so would also appear to twist and turn in different directions.
“However, what we’ve seen here, because we’ve got the whole history – a tapestry of the story – is that the opposite sides of the jets are nearly 180 degrees apart from each other. That tells us that this central disk is held steady and validates a prediction of the core accretion theory,” said Tan.
Where there’s one massive star, there could be others in this outer frontier of the Milky Way. Other massive stars may not yet have reached the point of firing off Roman-candle-style outflows. Data from the Atacama Large Millimeter Array in Chile, also presented in this study, has found another dense stellar core that could be in an earlier stage of construction.
The paper has been accepted for publication in The Astrophysical Journal.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Related Information
View more: Webb images of other protostar outflows – HH 49/50, L483, HH 46/47, and HH 211
View more: Data visualization of protostar outflows – HH 49/50
Animation Video – “Exploring Star and Planet Formation”
Explore the jets emitted by young stars in multiple wavelengths: ViewSpace Interactive
Read more about Herbig-Haro objects
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Related Images & Videos
Stellar Jet in Sh2-284 (NIRCam Image)
Webb’s image of the enormous stellar jet in Sh2-284 provides evidence that protostellar jets scale with the mass of their parent stars–the more massive the stellar engine driving the plasma, the larger the resulting jet.
Stellar Jet in Sh2-284 (NIRCam Compass Image)
This image of the stellar jet in Sh2-284, captured by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera), shows compass arrows, scale bar, and color key for reference.
Immense Stellar Jet in Sh2-284
This video shows the relative size of two different protostellar jets imaged by NASA’s James Webb Space Telescope. The first image shown is an extremely large protostellar jet located in Sh2-284, 15,000 light-years away from Earth. The outflows from the massive central prot…
Share
Details
Last Updated Sep 10, 2025 Location NASA Goddard Space Flight Center Contact Media Laura Betz
NASA’s Goddard Space Flight Center
Greenbelt, Maryland
laura.e.betz@nasa.gov
Ray Villard
Space Telescope Science Institute
Baltimore, Maryland
Christine Pulliam
Space Telescope Science Institute
Baltimore, Maryland
Related Terms
James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe
Related Links and Documents
The journal paper by Y. Cheng et al.
Keep Exploring Related Topics
James Webb Space Telescope
Space Telescope
Stars
Stars Stories
Universe
View the full article
-
By European Space Agency
In the past decade, the European Space Agency’s Gaia mission has revealed the nature, history, and behaviour of billions of stars. Our pioneering stargazer has reshaped our view of the skies around us like no other, revealing that star clusters are more connected than expected over vast distances.
View the full article
-
By USH
The weight of the gods was crushing, their toil beyond endurance. Let the burden pass to humankind! So speak the oldest verses carved into clay, a fragment from the Atrahasis tale of Mesopotamia. Yet what if these divine figures were not simply legends? What if the stories hint at something far older and stranger than we have allowed ourselves to believe? The name Anunnaki comes from the etched symbols of Sumerian records, their lines recounting the deeds of deities who shaped the world and watched over the Earth.
From the cradle of ancient Mesopotamia comes a story older than any empire, etched into clay tablets and whispered through time: the tale of the Anunnaki. Were they gods, symbols, or something far stranger visitors from beyond the stars who shaped human civilization? The myths of Sumer speak of creation, rebellion, giants, and a great flood. But when paired with the ancient astronaut theory, these legends take on a new dimension, one that could rewrite human history.
Who were the Anunnaki? In the ancient Sumerian texts of Mesopotamia, they are described as the offspring of An, the sky god, and Ki, the earth goddess. Their names appear across the Atrahasis epic, the Enuma Elish, the Epic of Gilgamesh, and the Sumerian King List, etched into clay tablets more than 4,000 years ago.
To mainstream historians, the Anunnaki are mythological gods. Yet in the ancient astronaut theory, they were real beings, extraterrestrial visitors who shaped early civilization.
Author Zecharia Sitchin popularized the idea that the Anunnaki came from Nibiru, a hidden “twelfth planet” on a long, elliptical orbit. According to his interpretation of Sumerian records, the Anunnaki faced an environmental crisis. Their planet’s atmosphere was failing, and the solution they sought was gold, which could be ground into particles and suspended as a shield.
This quest for survival brought them to Earth more than 400,000 years ago. They mined resources, altered life, and may even have engineered humanity itself.
The tablets describe how the lesser gods, the Igigi, were forced into back-breaking labor until they rebelled. To replace them, the Anunnaki created humans.
In myth, mankind was formed from clay mixed with divine blood. In Sitchin’s interpretation, this was genetic engineering: the fusion of Anunnaki DNA with Homo erectus. The first prototype was Adamu, a name that echoes the biblical Adam.
The Sumerian “Edin,” later mirrored in the Hebrew Eden, may not have been a paradise garden but an Anunnaki laboratory outpost.
Two Anunnaki brothers shaped humanity’s destiny: Enki – the god of wisdom and waters, often seen as humanity’s ally, granting knowledge. Enlil – stern and authoritarian, seeking control and fearing that humans might grow too powerful. Their rivalry runs through Mesopotamian myth, influencing stories of divine punishment, survival, and human struggle.
Over time, some Anunnaki defied the rules and took human women as partners. Their offspring were the Nephilim, giants and “mighty men of renown.” The Book of Enoch calls their fathers the Watchers, led by Shemyaza.
According to the stories, these hybrids grew violent, corrupted the world, and became uncontrollable. The solution was drastic: a great flood to wipe the Earth clean.
The Atrahasis epic, the story of Utnapishtim in the Epic of Gilgamesh, and the biblical Noah all describe the same event: a chosen man warned by a god, a vessel built to preserve life, animals carried aboard, and birds released to find land. Humanity survived, but weaker, with shorter lifespans, and forever changed.
Supporters of the ancient astronaut theory believe the Anunnaki left traces in stone:
Mesopotamian ziggurats – described as “bonds between heaven and earth,” possibly landing platforms.
The Great Pyramid of Giza – aligned to true north, massive in scale, theorized as a power plant or beacon rather than a tomb.
Megalithic monuments worldwide – stone circles, cyclopean walls, and sacred sites possibly linked to Anunnaki influence.
The Sumerian King List also suggests a divine legacy, describing rulers with lifespans of thousands of years, perhaps evidence of semi-divine hybrids.
Mainstream archaeology sees the Anunnaki as symbolic deities, metaphors for cosmic order and human struggle. But in alternative history, they were real beings, extraterrestrial visitors from Nibiru, who shaped civilization, taught astronomy, metallurgy, agriculture, and law, and left their mark in myths and monuments that endure to this day.
Explore the mystery of the Anunnaki—Sumerian gods, Nibiru, genetic engineering, Nephilim, the Great Flood, and the ancient astronaut theory in the video below.
View the full article
-
By NASA
4 min read
NASA, JAXA XRISM Satellite X-rays Milky Way’s Sulfur
An international team of scientists have provided an unprecedented tally of elemental sulfur spread between the stars using data from the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) spacecraft.
Astronomers used X-rays from two binary star systems to detect sulfur in the interstellar medium, the gas and dust found in the space between stars. It’s the first direct measurement of both sulfur’s gas and solid phases, a unique capability of X-ray spectroscopy, XRISM’s (pronounced “crism”) primary method of studying the cosmos.
“Sulfur is important for how cells function in our bodies here on Earth, but we still have a lot of questions about where it’s found out in the universe,” said Lía Corrales, an assistant professor of astronomy at the University of Michigan in Ann Arbor. “Sulfur can easily change from a gas to a solid and back again. The XRISM spacecraft provides the resolution and sensitivity we need to find it in both forms and learn more about where it might be hiding.”
A paper about these results, led by Corrales, published June 27 in the Publications of the Astronomical Society of Japan.
Watch to learn how the XRISM (X-ray Imaging and Spectroscopy Mission) satellite took an unprecidented look at our galaxy’s sulfur. XRISM is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency).
NASA’s Goddard Space Flight Center Using ultraviolet light, researchers have found gaseous sulfur in the space between stars. In denser parts of the interstellar medium, such as the molecular clouds where stars and planets are born, this form of sulfur quickly disappears.
Scientists assume the sulfur condenses into a solid, either by combining with ice or mixing with other elements.
When a doctor performs an X-ray here on Earth, they place the patient between an X-ray source and a detector. Bone and tissue absorb different amounts of the light as it travels through the patient’s body, creating contrast in the detector.
To study sulfur, Corrales and her team did something similar.
They picked a portion of the interstellar medium with the right density — not so thin that all the X-rays would pass through unchanged, but also not so dense that they would all be absorbed.
Then the team selected a bright X-ray source behind that section of the medium, a binary star system called GX 340+0 located over 35,000 light-years away in the southern constellation Scorpius.
This composite shows a section of the interstellar medium scientists X-rayed for sulfur using the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission). X-ray binary GX 340+0 is the blue dot in the center. The composite contains a blend of imagery in X-rays (represented in deep blue), infrared, and optical light.DSS/DECaPS/eRosita/NASA’s Goddard Space Flight Center This composite shows a section of the interstellar medium scientists X-rayed for sulfur using the Japan-led XRISM (X-ray Imaging and Spectroscopy Mission). The X-ray binary 4U 1630–472 is highlighted at the center. The composite contains a blend of imagery in X-rays (represented in deep blue), infrared, and optical light.DSS/DECaPS/eRosita/NASA’s Goddard Space Flight Center Using the Resolve instrument on XRISM, the scientists were able to measure the energy of GX 340+0’s X-rays and determined that sulfur was present not only as a gas, but also as a solid, possibly mixed with iron.
“Chemistry in environments like the interstellar medium is very different from anything we can do on Earth, but we modeled sulfur combined with iron, and it seems to match what we’re seeing with XRISM,” said co-author Elisa Costantini, a senior astronomer at the Space Research Organization Netherlands and the University of Amsterdam. “Our lab has created models for different elements to compare with astronomical data for years. The campaign is ongoing, and soon we’ll have new sulfur measurements to compare with the XRISM data to learn even more.”
Iron-sulfur compounds are often found in meteorites, so scientists have long thought they might be one way sulfur solidifies out of molecular clouds to travel through the universe.
In their paper, Corrales and her team propose a few compounds that would match XRISM’s observations — pyrrhotite, troilite, and pyrite, which is sometimes called fool’s gold.
The researchers were also able to use measurements from a second X-ray binary called 4U 1630-472 that helped confirm their findings.
“NASA’s Chandra X-ray Observatory has previously studied sulfur, but XRISM’s measurements are the most detailed yet,” said Brian Williams, the XRISM project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since GX 340+0 is on the other side of the galaxy from us, XRISM’s X-ray observations are a unique probe of sulfur in a large section of the Milky Way. There’s still so much to learn about the galaxy we call home.”
XRISM is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). NASA and JAXA developed Resolve, the mission’s microcalorimeter spectrometer.
Download images and videos through NASA’s Scientific Visualization Studio. By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Alise Fisher
202-358-2546
alise.m.fisher@nasa.gov
NASA Headquarters, Washington
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jul 23, 2025 EditorJeanette Kazmierczak Related Terms
Goddard Space Flight Center Astrophysics Stars The Universe X-ray Astronomy X-ray Binaries XRISM (X-Ray Imaging and Spectroscopy Mission) View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.