Jump to content

NASA Advanced Air Mobility Partnerships


Recommended Posts

  • Publishers
Posted

12 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA Advanced Air Mobility Partnerships map showing the US, Canada, France & Germany maps with locations to partners.

NASA is partnered with other government agencies, industry, and academia to conduct Advanced Air Mobility (AAM) research to benefit a future transportation system with routine flight of air taxis and drones. See the current partnerships below and in the map above.

Aerostar
Sioux Falls, South Dakota
NASA and Aerostar are conducting collaborative evaluation of a NASA prototype simulated Upper Class E Traffic Management (ETM) system.

AeroVironment
Simi Valley, California
NASA and AeroVironment are conducting research, development, testing, and evaluation of a NASA prototype simulated Upper Class E Traffic Management (ETM) system.

AFWERX – U.S. Air Force
Wright-Patterson Air Force Base, Ohio
NASA and AFWERX have ongoing information exchange efforts across multiple AAM areas. NASA is using Joby’s air taxi aircraft for testing at Edwards Air Force Base in partnership with the U.S. Air Force’s AFWERX program.

Air Force Research Laboratory Aerospace Systems Directorate (AFRL)
Wright-Patterson Air Force Base, Ohio
NASA and AFRL are sharing data about autonomous systems in AAM vehicles, airspace management systems, and infrastructure. Research includes configuration of formal methods, control systems validation, and flight critical software verification and validation.

AIRT
Miami, Florida
NASA and AIRT are developing a safety management system to enable highly-automated AAM-focused aviation for emergency response.

A&P Technology
Cincinnati, Ohio
NASA and A&P Technology are developing new braided composite materials to improve the crash safety of composite aircraft. A&P Technology and NASA will work together from the design phase, to fabrication, to dynamic crush test experiments on the materials.

Archer Aviation
San Jose, California
NASA and Archer will focus on testing the safety, energy and power performance capabilities of the Archer air taxi’s battery cells at NASA’s Johnson Space Center. The goal is to jointly improve overall safety of AAM and human spacecraft battery applications.

AURA Network Systems
McLean, Virginia
NASA and AURA Network Systems will perform AAM flight test evaluations of Communication, Navigation, and Surveillance (CNS) technologies to advance the maturity of these technologies for AAM aircraft.

The City of Orlando
Orlando, Florida
NASA is working with city and state governments to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning. NASA is exchanging information with these governments to identify the best practices for how a local government could design this system. Each city or state government involved will create a joint document with NASA using computer modeling software to describe how this could work in their locality.

Boeing
Huntsville, Alabama
NASA and Boeing are researching the integration, demonstration, and evaluation of autonomous systems and tools to support AI standardization.

Defense Advanced Research Projects Agency (DARPA)
Arlington, Virginia
NASA and Lockheed Martin – Sikorsky are working together with DARPA under a DARPA agreement to research air taxi automation technology using Sikorsky helicopters. In a separate effort, NASA is working with DARPA on the Automated Rapid Certification Of Software (ARCOS) program, which will aid in developing the criteria for automation software certification.

Embry-Riddle Aeronautical University
Daytona Beach, Florida
NASA and Embry-Riddle are examining existing mishap data collected from the NASA Human Contribution to Safety (HC2S) test bed, and data collected independently, to identify realistic, actionable methods to promote better response to disturbances in flight.

DLR – German Aerospace Center
Braunschweig, Germany
Cologne, Germany

NASA and DLR researchers are designing algorithms and conducting fast-time simulations to help address the challenges of a future air traffic management system with more aircraft. In a separate effort, NASA and DLR are researching the air flow generated by rotary wing aircraft. The team is using visual tools like schlieren and shadowgraph techniques to see the directions of airflow invisible to the naked eye.

General Electric Company
Niskayuna, New York
NASA and General Electric Company are researching flight safety in autonomous systems. Efforts focus on assurance of flight-critical systems (including airborne and ground software systems), human autonomy teaming, and efficient airspace operations.

George Washington University
Washington, D.C.
NASA and several universities are demonstrating a NASA-created safety management system called “In-Time Learning-Based Safety Management for Scalable Heterogeneous AAM Operations.” This is a combined effort with George Washington University, Vanderbilt University, MIT/Lincoln Labs, and UT-Austin.

Iowa State
Ames, Iowa
NASA, Iowa State and Notre Dame University are developing and evaluating automated techniques for predicting, detecting, diagnosing, and mitigating diverse configuration problems and runtime failures in small Uncrewed Aerial Systems (sUAS), also called drones.

Joby Aviation
Santa Cruz, California
NASA and Joby are testing the human response to autonomy to find management solutions for autonomous air taxis using only a small number of human ground operators. This research will lead to a better understanding of technology solutions needed to ensure safe, routine, multi-aircraft AAM flights. In another effort, in partnership with the U.S. Air Force’s AFWERX program, NASA is using Joby’s aircraft for testing at Edwards Air Force Base.

Lockheed Martin – Sikorsky
Bridgeport, Connecticut
NASA and Lockheed Martin – Sikorsky are conducting dynamic crush and ballistic impact testing of new woven composite materials. The test material will be provided by Lockheed Martin and NASA will conduct the testing. The goal is to improve NASA’s impact modeling capabilities and to improve the crash safety of future composite aircraft.

Lone Star UAS Center of Excellence and Innovation at Texas A&M University
Corpus Christi, Texas
NASA and the Lone Star UAS Center of Excellence and Innovation are developing and testing new AAM technologies through experiments, measurements, and flight tests.

Longbow
Hampton, Virginia
NASA and Longbow will conduct collaborative flight tests and use NASA-developed prognostic services to increase situational awareness and decrease exposure to hazards.

Massachusetts Department of Transportation
Boston, Massachusetts
NASA is working with city and state governments to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning. NASA is exchanging information with these governments to identify the best practices for how a local government could design this system. Each city or state government involved will create a joint document with NASA using computer modeling software to describe how this could work in their locality.

Massachusetts Institute of Technology (MIT)
Cambridge, Massachusetts
NASA and MIT are capturing the human contribution to safety and are developing methods to increase safety in autonomous systems like training a machine to “see” the obstacles that a human would see.

Minnesota Department of Transportation
St. Paul, Minnesota
NASA is working with city and state governments to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning. NASA is exchanging information with these governments to identify the best practices for how a local government could design this system. Each city or state government involved will create a joint document with NASA using computer modeling software to describe how this could work in their locality.

MIT/Lincoln Labs
Lexington, Massachusetts
NASA and several universities are demonstrating a NASA-created safety management system called “In-Time Learning-Based Safety Management for Scalable Heterogeneous AAM Operations.” This is a combined effort with George Washington University, Vanderbilt University, MIT/Lincoln Labs, and UT-Austin.

Mitre
Bedford, Massachusetts
NASA and Mitre are researching the accuracy of positioning, navigation, and timing (PNT) of different aviation navigation systems in modeling and simulation. In a separate agreement, NASA and Mitre are developing a service to predict GPS connectivity in urban areas to help adapt pre-flight and in flight routes for AAM aircraft.

Moog
East Aurora, New York
NASA is partnered with Moog to conduct acoustic testing of their SureFly aircraft. Moog is providing the test vehicle and executing the flight test, while NASA is collecting acoustic data during the tests using an array of ground microphones. These acoustic measurements will provide valuable data used to improve NASA’s noise prediction tools for air taxis.

National Institute of Standards and Technology (NIST)
Gaithersburg, Maryland
NASA and NIST are investigating software for autonomous vehicles to improve the software verification and coordination.

North Central Texas Council of Governments
Arlington, Texas
NASA is working with city and state governments to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning. NASA is exchanging information with these governments to identify the best practices for how a local government could design this system. Each city or state government involved will create a joint document with NASA using computer modeling software to describe how this could work in their locality.

Northrop Grumman
West Falls Church, Virginia
Palmdale, California

NASA and Northrop Grumman are investigating the use of large Uncrewed Aircraft Systems (UAS) for cargo transportation between airports and/or other National Airspace System (NAS) access points.

Notre Dame University
South Bend, Indiana
NASA, Notre Dame and Iowa State are developing and evaluating automated techniques for predicting, detecting, diagnosing, and mitigating diverse configuration problems and runtime failures in small Uncrewed Aerial Systems (sUAS), also called drones.

Ohio Department of Transportation (ODOT)
Springfield, Ohio
NASA and ODOT will share critical flight and ground operations safety data during flight tests. These flight tests will help evaluate safety management systems for highly-automated aircraft. In a separate effort, NASA and ODOT are exchanging information to advance autonomous cargo aircraft operations. NASA is also working with ODOT to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning by creating a joint document with NASA using computer modeling software to describe how this could work in their locality.

Old Dominion University
Norfolk, Virginia
NASA and Old Dominion University are conducting studies focusing on the collaboration between humans and autonomous systems to see how the two would work together to manage large numbers of autonomous AAM flights. NASA is developing a Human Autonomy Teaming Task Battery to evaluate performance and workload for a human working with an autonomous system.

ONERA (Office National d’Etudes et de Recherches Aérospatiales) – The French Aerospace Lab
Palaiseau, France
In one effort, NASA and ONERA are using computational fluid dynamics (CFD), or the use of mathematics, physics and computational software to visualize how a gas or liquid flows, for broadband noise prediction of a hovering rotor to advance broadband noise prediction capabilities for AAM aircraft. In another effort, NASA and ONERA are collaborating on the acoustics modeling of ducted rotors with optimized liners. These findings will be used to improve the acoustic performance of future tilt-duct aircraft.

Penn State University
State College, Pennsylvania
NASA and Penn State are developing safe role allocations and communication between human-to-human or human-to-machine communication to assure new delegations of authority and responsibility will work in autonomous systems.

Stanford University
Stanford, California
NASA and Stanford are developing and demonstrating a framework for providing algorithmic assurances and designing fault detection, isolation, and recovery (FDIR) methods for those components of the autonomy stack that rely on data-driven methods based on machine learning.

University Of Central Florida (UCF)
Orlando, Florida
NASA is working with UCF to improve the safety of drones through data-driven predictive analytics. 

Université de Sherbrooke
Quebec, Canada
NASA and Université de Sherbrooke are investigating the noise generated by fundamental airfoil shapes. NASA will provide customized test articles that will be tested in the University’s anechoic wind tunnel facility. The findings will be used to improve noise predictions for a wide variety of aircraft.

U.S. Army Combat Capabilities Development Command (DEVCOM) and U.S. Navy Office of Naval Research (ONR) 
Moffett Field, California
Arlington, Virginia

Effort between NASA, DEVCOM and ONR to fund the Vertical Lift Research Centers of Excellence (VLRCOE). The VLRCOE program was renewed in 2021, with three awardees selected to receive approximately $22M in funding over five years. The Georgia Institute of Technology, Penn State University, and the University of Maryland were selected to perform research on a wide variety of vertical lift technology topics. In addition to establishing a workforce pipeline, this effort will help improve the safety, performance and affordability of civilian and military helicopters and other vertical lift aircraft.

University of Texas
Austin, Texas
NASA and several universities are demonstrating a NASA-created safety management system called “In-Time Learning-Based Safety Management for Scalable Heterogeneous AAM Operations.” This is a combined effort with George Washington University, Vanderbilt University, MIT/Lincoln Labs, and UT-Austin.

Vanderbilt University
Nashville, Tennessee
NASA and several universities are demonstrating a NASA-created safety management system called “In-Time Learning-Based Safety Management for Scalable Heterogeneous AAM Operations.” This is a combined effort with George Washington University, Vanderbilt University, MIT/Lincoln Labs, and UT-Austin.

Virginia Commonwealth University (VCU)
Richmond, Virginia
NASA, VCU and NIST are developing and evaluating an integrated model- and data-driven approach for risk monitoring to identify and predict elevated risk states for known risk(s) in autonomous technology.

Wisk
Mountain View, California
NASA and Wisk are testing the human response to autonomy to find management solutions for autonomous air taxis using only a small number of human ground operators. This research will lead to a better understanding of technology solutions needed to ensure safe, routine, multi-aircraft AAM flights.

Xwing
San Francisco, California
NASA and Xwing are sharing critical flight and ground operations data, algorithms, and evaluating safety management systems to ensure autonomous aircraft operations are safe. 

Zipline
San Francisco, California
NASA and Zipline are testing the human response to autonomy to find management solutions for autonomous air taxis using only a small number of human ground operators. This research will lead to a better understanding of technology solutions needed to ensure safe, routine, multi-aircraft AAM flights.

Active NASA Space Act Agreements and NASA Interagency Agreements that relate to Advanced Air Mobility (AAM) are listed here. NASA does not endorse any entity listed here. NASA works with research partners under these agreements to improve technology for the entire AAM industry’s benefit.

AAM Partners List (PDF)

Partnerships Contact

Jamie Turner

jamie.m.turner@nasa.gov

Media Contact

Teresa Whiting

teresa.whiting@nasa.gov

Share

Details

Last Updated
Mar 20, 2024
Editor
Lillian Gipson
Contact

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX NASA and its partners will discuss the upcoming crew rotation to the International Space Station during a pair of news conferences on Thursday, July 10, from the agency’s Johnson Space Center in Houston.

      First is an overview news conference at 12 p.m. EDT with mission leadership discussing final launch and mission preparations on the agency’s YouTube channel.
      Next, crew will participate in a news conference at 2 p.m. on NASA’s YouTube channel, followed by individual astronaut interviews at 3 p.m. This is the final media opportunity with Crew-11 before they travel to NASA’s Kennedy Space Center in Florida for launch.

      The Crew-11 mission, targeted to launch in late July/early August, will carry NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov to the orbiting laboratory. The crew will launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from Launch Complex 39A.

      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Monday, July 7, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is available online.
      Any media interested in participating in the news conferences by phone must contact the Johnson newsroom by 9:45 a.m. the day of the event. Media seeking virtual interviews with the crew must submit requests to the Johnson newsroom by 5 p.m. on Monday, July 7.

      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):

      12 p.m.: Mission Overview News Conference
      Steve Stich, manager, Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, International Space Station Program, NASA Johnson NASA’s Space Operations Mission Directorate representative Sarah Walker, director, Dragon Mission Management, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 2 p.m.: Crew News Conference
      Zena Cardman, Crew-11 commander, NASA Mike Fincke, Crew-11 pilot, NASA Kimiya Yui, Crew-11 mission specialist, JAXA Oleg Platonov, Crew-11 mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-11 members available for a limited number of interviews
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.

      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon spacecraft and Boeing Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.

      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.

      The Crew-11 mission also will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / Joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Humans in Space ISS Research Opportunities For International Participants to Get Involved View the full article
    • By NASA
      Credit: NASA NASA has awarded a contract to MacLean Engineering & Applied Technologies, LLC of Houston to provide simulation and advanced software services to the agency.
      The Simulation and Advanced Software Services II (SASS II) contract includes services from Oct. 1, 2025, through Sept. 30, 2030, with a maximum potential value not to exceed $150 million. The contract is a single award, indefinite-delivery/indefinite-quality contract with the capability to issue cost-plus-fixed-fee task orders and firm-fixed-price task orders.
      Under the five-year SASS II contract, the awardee is tasked to provide simulation and software services for space-based vehicle models and robotic manipulator systems; human biomechanical representations for analysis and development of countermeasures devices; guidance, navigation, and control of space-based vehicles for all flight phases; and space-based vehicle on-board computer systems simulations of flight software systems. Responsibilities also include astronomical object surface interaction simulation of space-based vehicles, graphics support for simulation visualization and engineering analysis, and ground-based and onboarding systems to support human-in-the-loop training.
      Major subcontractors include Tietronix Software Inc. in Houston and VEDO Systems, LLC, in League City, Texas.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov/
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      Chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Technology Johnson Space Center View the full article
    • By NASA
      5 min read
      How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s SPHEREx mission will map the entire sky in 102 different wavelengths, or colors, of infrared light. This image of the Vela Molecular Ridge was captured by SPHEREx and is part of the mission’s first ever public data release. The yellow patch on the right side of the image is a cloud of interstellar gas and dust that glows in some infrared colors due to radiation from nearby stars. NASA/JPL-Caltech NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky map of the universe. Now settled into low-Earth orbit, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) has begun delivering its sky survey data to a public archive on a weekly basis, allowing anyone to use the data to probe the secrets of the cosmos.
      “Because we’re looking at everything in the whole sky, almost every area of astronomy can be addressed by SPHEREx data,” said Rachel Akeson, the lead for the SPHEREx Science Data Center at IPAC. IPAC is a science and data center for astrophysics and planetary science at Caltech in Pasadena, California.
      Almost every area of astronomy can be addressed by SPHEREx data.
      Rachel Akeson
      SPHEREx Science Data Center Lead
      Other missions, like NASA’s now-retired WISE (Wide-field Infrared Survey Explorer), have also mapped the entire sky. SPHEREx builds on this legacy by observing in 102 infrared wavelengths, compared to WISE’s four wavelength bands.
      By putting the many wavelength bands of SPHEREx data together, scientists can identify the signatures of specific molecules with a technique known as spectroscopy. The mission’s science team will use this method to study the distribution of frozen water and organic molecules — the “building blocks of life” — in the Milky Way.
      This animation shows how NASA’s SPHEREx observatory will map the entire sky — a process it will complete four times over its two-year mission. The telescope will observe every point in the sky in 102 different infrared wavelengths, more than any other all-sky survey. SPHEREx’s openly available data will enable a wide variety of astronomical studies. Credit: NASA/JPL-Caltech The SPHEREx science team will also use the mission’s data to study the physics that drove the universe’s expansion following the big bang, and to measure the amount of light emitted by all the galaxies in the universe over time. Releasing SPHEREx data in a public archive encourages far more astronomical studies than the team could do on their own.
      “By making the data public, we enable the whole astronomy community to use SPHEREx data to work on all these other areas of science,” Akeson said.
      NASA is committed to the sharing of scientific data, promoting transparency and efficiency in scientific research. In line with this commitment, data from SPHEREx appears in the public archive within 60 days after the telescope collects each observation. The short delay allows the SPHEREx team to process the raw data to remove or flag artifacts, account for detector effects, and align the images to the correct astronomical coordinates.
      The team publishes the procedures they used to process the data alongside the actual data products. “We want enough information in those files that people can do their own research,” Akeson said.
      One of the early test images captured by NASA’s SPHEREx mission in April 2025. This image shows a section of sky in one infrared wavelength, or color, that is invisible to the human eye but is represented here in a visible color. This particular wavelength (3.29 microns) reveals a cloud of dust made of a molecule similar to soot or smoke. NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), once again represented by a color that is visible to the human eye. The dust cloud has vanished because the molecules that make up the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color. NASA/JPL-Caltech




      During its two-year prime mission, SPHEREx will survey the entire sky twice a year, creating four all-sky maps. After the mission reaches the one-year mark, the team plans to release a map of the whole sky at all 102 wavelengths.
      In addition to the science enabled by SPHEREx itself, the telescope unlocks an even greater range of astronomical studies when paired with other missions. Data from SPHEREx can be used to identify interesting targets for further study by NASA’s James Webb Space Telescope, refine exoplanet parameters collected from NASA’s TESS (Transiting Exoplanet Survey Satellite), and study the properties of dark matter and dark energy along with ESA’s (European Space Agency’s) Euclid mission and NASA’s upcoming Nancy Grace Roman Space Telescope.
      The SPHEREx mission’s all-sky survey will complement data from other NASA space telescopes. SPHEREx is illustrated second from the right. The other telescope illustrations are, from left to right: the Hubble Space Telescope, the retired Spitzer Space Telescope, the retired WISE/NEOWISE mission, the James Webb Space Telescope, and the upcoming Nancy Grace Roman Space Telescope. NASA/JPL-Caltech The IPAC archive that hosts SPHEREx data, IRSA (NASA/IPAC Infrared Science Archive), also hosts pointed observations and all-sky maps at a variety of wavelengths from previous missions. The large amount of data available through IRSA gives users a comprehensive view of the astronomical objects they want to study.
      “SPHEREx is part of the entire legacy of NASA space surveys,” said IRSA Science Lead Vandana Desai. “People are going to use the data in all kinds of ways that we can’t imagine.”
      NASA’s Office of the Chief Science Data Officer leads open science efforts for the agency. Public sharing of scientific data, tools, research, and software maximizes the impact of NASA’s science missions. To learn more about NASA’s commitment to transparency and reproducibility of scientific research, visit science.nasa.gov/open-science. To get more stories about the impact of NASA’s science data delivered directly to your inbox, sign up for the NASA Open Science newsletter.
      By Lauren Leese
      Web Content Strategist for the Office of the Chief Science Data Officer 
      More About SPHEREx
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      To learn more about SPHEREx, visit:
      https://nasa.gov/SPHEREx
      Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Amanda Adams
      Office of the Chief Science Data Officer
      256-683-6661
      amanda.m.adams@nasa.gov
      Share








      Details
      Last Updated Jul 02, 2025 Related Terms
      Open Science Astrophysics Galaxies Jet Propulsion Laboratory SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) The Search for Life The Universe Explore More
      3 min read Discovery Alert: Flaring Star, Toasted Planet


      Article


      4 hours ago
      11 min read 3 Years of Science: 10 Cosmic Surprises from NASA’s Webb Telescope


      Article


      5 hours ago
      7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      An unexpectedly strong solar storm rocked our planet on April 23, 2023, sparking auroras as far south as southern Texas in the U.S. and taking the world by surprise. 
      Two days earlier, the Sun blasted a coronal mass ejection (CME) — a cloud of energetic particles, magnetic fields, and solar material — toward Earth. Space scientists took notice, expecting it could cause disruptions to Earth’s magnetic field, known as a geomagnetic storm. But the CME wasn’t especially fast or massive, and it was preceded by a relatively weak solar flare, suggesting the storm would be minor. But it became severe.
      Using NASA heliophysics missions, new studies of this storm and others are helping scientists learn why some CMEs have more intense effects — and better predict the impacts of future solar eruptions on our lives.
      During the night of April 23 to 24, 2023, a geomagnetic storm produced auroras that were witnessed as far south as Arizona, Arkansas, and Texas in the U.S. This photo shows green aurora shimmering over Larimore, North Dakota, in the early morning of April 24. Copyright Elan Azriel, used with permission Why Was This Storm So Intense?
      A paper published in the Astrophysical Journal on March 31 suggests the CME’s orientation relative to Earth likely caused the April 2023 storm to become surprisingly strong.
      The researchers gathered observations from five heliophysics spacecraft across the inner solar system to study the CME in detail as it emerged from the Sun and traveled to Earth.
      They noticed a large coronal hole near the CME’s birthplace. Coronal holes are areas where the solar wind — a stream of particles flowing from the Sun — floods outward at higher than normal speeds.
      “The fast solar wind coming from this coronal hole acted like an air current, nudging the CME away from its original straight-line path and pushing it closer to Earth’s orbital plane,” said the paper’s lead author, Evangelos Paouris of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “In addition to this deflection, the CME also rotated slightly.”
      Paouris says this turned the CME’s magnetic fields opposite to Earth’s magnetic field and held them there — allowing more of the Sun’s energy to pour into Earth’s environment and intensifying the storm.
      The strength of the April 2023 geomagnetic storm was a surprise in part because the coronal mass ejection (CME) that produced it followed a relatively weak solar flare, seen as the bright area to the lower right of center in this extreme ultraviolet image of the Sun from NASA’s Solar Dynamics Observatory. The CMEs that produce severe geomagnetic storms are typically preceded by stronger flares. However, a team of scientists think fast solar wind from a coronal hole (the dark area below the flare in this image) helped rotate the CME and made it more potent when it struck Earth. NASA/SDO Cool Thermosphere
      Meanwhile, NASA’s GOLD (Global-scale Observations of Limb and Disk) mission revealed another unexpected consequence of the April 2023 storm at Earth.
      Before, during, and after the storm, GOLD studied the temperature in the middle thermosphere, a part of Earth’s upper atmosphere about 85 to 120 miles overhead. During the storm, temperatures increased throughout GOLD’s wide field of view over the Americas. But surprisingly, after the storm, temperatures dropped about 90 to 198 degrees Fahrenheit lower than they were before the storm (from about 980 to 1,070 degrees Fahrenheit before the storm to 870 to 980 degrees Fahrenheit afterward).
      “Our measurement is the first to show widespread cooling in the middle thermosphere after a strong storm,” said Xuguang Cai of the University of Colorado, Boulder, lead author of a paper about GOLD’s observations published in the journal JGR Space Physics on April 15, 2025.
      The thermosphere’s temperature is important, because it affects how much drag Earth-orbiting satellites and space debris experience.
      “When the thermosphere cools, it contracts and becomes less dense at satellite altitudes, reducing drag,” Cai said. “This can cause satellites and space debris to stay in orbit longer than expected, increasing the risk of collisions. Understanding how geomagnetic storms and solar activity affect Earth’s upper atmosphere helps protect technologies we all rely on — like GPS, satellites, and radio communications.”
      Predicting When Storms Strike
      To predict when a CME will trigger a geomagnetic storm, or be “geoeffective,” some scientists are combining observations with machine learning. A paper published last November in the journal Solar Physics describes one such approach called GeoCME.
      Machine learning is a type of artificial intelligence in which a computer algorithm learns from data to identify patterns, then uses those patterns to make decisions or predictions.
      Scientists trained GeoCME by giving it images from the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft of different CMEs that reached Earth along with SOHO images of the Sun before, during, and after each CME. They then told the model whether each CME produced a geomagnetic storm.
      Then, when it was given images from three different science instruments on SOHO, the model’s predictions were highly accurate. Out of 21 geoeffective CMEs, the model correctly predicted all 21 of them; of 7 non-geoeffective ones, it correctly predicted 5 of them.
      “The algorithm shows promise,” said heliophysicist Jack Ireland of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. “Understanding if a CME will be geoeffective or not can help us protect infrastructure in space and technological systems on Earth. This paper shows machine learning approaches to predicting geoeffective CMEs are feasible.”
      The white cloud expanding outward in this image sequence is a coronal mass ejection (CME) that erupted from the Sun on April 21, 2023. Two days later, the CME struck Earth and produced a surprisingly strong geomagnetic storm. The images in this sequence are from a coronagraph on the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft. The coronagraph uses a disk to cover the Sun and reveal fainter details around it. The Sun’s location and size are indicated by a small white circle. The planet Jupiter appears as a bright dot on the far right. NASA/ESA/SOHO Earlier Warnings
      During a severe geomagnetic storm in May 2024 — the strongest to rattle Earth in over 20 years — NASA’s STEREO (Solar Terrestrial Relations Observatory) measured the magnetic field structure of CMEs as they passed by.
      When a CME headed for Earth hits a spacecraft first, that spacecraft can often measure the CME and its magnetic field directly, helping scientists determine how strong the geomagnetic storm will be at Earth. Typically, the first spacecraft to get hit are one million miles from Earth toward the Sun at a place called Lagrange Point 1 (L1), giving us only 10 to 60 minutes advanced warning.
      By chance, during the May 2024 storm, when several CMEs erupted from the Sun and merged on their way to Earth, NASA’s STEREO-A spacecraft happened to be between us and the Sun, about 4 million miles closer to the Sun than L1.
      A paper published March 17, 2025, in the journal Space Weather reports that if STEREO-A had served as a CME sentinel, it could have provided an accurate prediction of the resulting storm’s strength 2 hours and 34 minutes earlier than a spacecraft could at L1.
      According to the paper’s lead author, Eva Weiler of the Austrian Space Weather Office in Graz, “No other Earth-directed superstorm has ever been observed by a spacecraft positioned closer to the Sun than L1.”
      Earth’s Lagrange points are places in space where the gravitational pull between the Sun and Earth balance, making them relatively stable locations to put spacecraft. NASA By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By USH
      In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology. 

      With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure. 
      The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most. 
      00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
        View the full article
  • Check out these Videos

×
×
  • Create New...